Free Pascal :
Users manud

Users' manual for Free Pascal, version 2.0.0
Document version 2.0
May 2005

Micha®l Van Canneyt
Florian Kl mp

Contents

1

Introduction

1.1 Aboutthisdocument
1.2 Aboutthecompiler e

1.3 Gettingmoreinformation.

Installing the compiler

2.1 Beforelngtalation: Requirements oo

22

2.3
24
25

211
212

Systemrequirements
Softwarerequirements
Under DOS
Under UNIX e
Under Windows e
Under OS/2

Installingthecompiler.

221

222

Installingunder DOSorWindows
Mandatory installationsteps. o
Optional Installation: The coprocessor emulation
Installingunder Linux
Mandatory installationsteps. Lo

Optional congurationsteps e e e

Beforecompiling

Testingthecompiler

Compiler usage

31 Filesearching
311 Commandline les
312 Unitles e
313 Includeles
314 Object les o e
315 Conguration le
316 Aboutlong lenames

10
10
10
10
11
12
12
13
13
13

CONTENTS

3.2 Compilingaprogram 18
33 Compilingaunit 19
3.4 Units, librariesand smartlinking 19
35 Reducingthesizeof yourprogram 20
Compiling problems 21
41 Generd problems 21
4.2 Problemsyou may encounter under DOS L 21
Compiler con guration 22
5.1 Usingthecommand-lineoptions 22
511 Generad options. 22
5.1.2 Optionsfor gettingfeedback 23
513 Optionsconcerning lesand directories 23
5.1.4 Optionscontrollingthekindof output. 24
5.1.5 Options concerning the sources (language options) 27
5.2 Usingtheconguration le e 29
521 HIFDEF 29
522 HIFNDEF 30
523 HELSE 30
524 HENDIF 30
525 #DEFINE 31
52.6 #HUNDEF 31
527 H#WRITE e 31
528 H#HINCLUDE 31
529 #SECTION 32
5.3 Variablesubstitutioninpaths 32
The|DE 33
6.1 FirststepswiththelDE 33
6.1.1 StatingthelDE 33
6.1.2 IDECommandlineoptions 33
6.1.3 ThelDESCreen 34
6.2 NavigatinginthelDE 35
6.21 Usingthekeyboard 35
6.22 Usingthemouse 35
6.2.3 Navigatingindialogs. 36
6.3 WINdows e 36
6.31 WindowbhasiCs e 36
6.3.2 Sizingandmovingwindows 37
6.3.3 Working with multiplewindows 37

CONTENTS

6.3.4 Dialogwindows 38
6.4 TheMenu 38
6.4.1 Accessingthemenu 39
6.42 TheFilemenu 39
6.43 TheEditmenu 39
6.44 TheSearchmenu 40
6.45 TheRunmenu 41
6.46 TheCompilemenu 41
6.47 TheDebugmenu 42
6.48 TheToolsmenu. et 42
6.49 TheOptionsmenu ittt 42
6.4.10 TheWindowmenu i 43
6.411 TheHelpmenu 44
6.5 Editingtext 44
651 Insertmodes 44
6.52 Blocks 45
6.53 Settingbookmarks 45
6.5.4 Jumpingtoasourceline 46
6.55 Syntaxhighlighting., 46
6.5.6 CodeCompletion 47
6.57 CodeTemplateS. 47
6.6 Searchingandreplacing. 49
6.7 Thesymbol browser. 50
6.8 RUNNINg Programs o e e 52
6.9 Debugging programs i e e e e 53
6.9.1 Usingbreakpoints 53
6.9.2 Usingwatches 55
693 Thecalstack 55
6.94 TheGDBwindow 56
6.10 USINgTOOIS o 57
6.10.1 Themessageswindow i ittt 57
6.10.2 Grep. . . v v o e e 57
6.10.3 TheASClitable i 58
6.10.4 Thecaculaor. e 58
6.10.5 Addingnewtools. 59
6.10.6 Metaparameters e e 60
6.10.7 Buildingacommand linedidlogbox 62
6.11 Project management and compileroptions L 65
6.11.1 Theprimary le e e e 65
6.11.2 Thedirectorydiadlog 65

CONTENTS

6.11.3 Thetarget operatingsystem 66
6.11.4 Compileroptions 66
6.11.5 Linkeroptions 71
6.11.6 MemMOry SIZES. o o i e e e e 72
6.11.7 Debugoptions 72
6.11.8 Theswitchesmode 73
6.12 CustomizingtheIDE 74
6.12.1 Preferences 74
6.12.2 Thedesktop. 75
6.12.3 TheEditor e 76
6.124 MOUSE. o o e 77
6.125 ColOrs. 78
6.13 Thehelpsystem 79
6.13.1 Navigatinginthehelpsystem 80
6.13.2 Workingwithhelples 80
6.13.3 Theaboutdialog 8l
6.14 Keyboardshortcuts 81
Porting Turbo Pascal Code 86
7.1 Thingsthatwillnotwork 86
7.2 Thingswhichareextra 87
7.3 Turbo Pascal compatibilitymode, 89
74 Anoteonlong lenamesunder DOS i 90
Utilities that come with Free Pascal 91
8.1 Demoprogramsandexamples 91
82 fpomake 91
8.3 fpdoc- Pascal Unitdocumenter. 91
8.4 h2pas- Cheader toPascal Unitconverter 92
841 OpLioNS o e e 92
84.2 CoOnstructS e 92
85 h2paspp- preprocessor forh2pas L 94
851 Usage 9%
852 Options e 94
8.6 PppUdUMP PrOgraM o o v e e e e e e 94
8.7 PpPUMOVEPIOGraM . . . o v v o i e e e e e e 95
8.8 ptop-Pasca sourcebeautier 96
8.8.1 ptopprogram e e e 96
8.8.2 Theptopconguration le 97
8.83 ptopuunit 98
8.9 rstconv program e e e 99

CONTENTS

8.10 unitdiff program 100
8.10.1 SYNOPSIS .« . v v v i e e 100

8.10.2 Descriptionandusage e e 100

8.10.3 OplioNS o 100

9 Unitsthat come with Free Pascal 102
9.1 Standardunits 102
9.2 UnderDOS 103
9.3 UnderWindows 103
94 UnderLinuxX o o e 103
95 UnderOS/2 104
9.6 Unitavailability 104

10 Debugging your Programs 105
10.1 Compiling your program with debugger support 105
10.2 Usinggdb todebugyourprogram 106
10.3 Caveatswhendebuggingwithgdb 107
10.4 Support for gpr of ,theeNu proler 108
105 Detectinghegpmemory leaks. 108
10.6 Linenumbersinrun-timeerror backtraces oL 108
10.7 Combining heaptrc andlineinfo 109

11 CGI programmingin Free Pascal 110
111 Gettingyourdata oo 110
11.1.1 Datacomingthrough standardinput. 110

11.1.2 Data passed through an environment variable 112

11.2 Producing Output o o e e 114
11.3 I'munder Windows, whatnow ? 114

A Alphabetical listing of command-line options 115
B Alphabetical list of reserved words 119
C Compiler messages 120
C.1 General compiler MeSSAgES« o o v v e e e 120
C.2 SCaNNErMESSATES. . .« v v v e e e e e e e e 121
C.3 Parsarmessages v v v i e e e e e 124
C.4 Typechecking €rrors o o 137
C5 Symbolhandling 141
C.6 Codegenerator MESSAgES . . . « v v v v v v vt e e e 143
C.7 Errorsof assembling/linkingstage 145
C.8 Unitloadingmessages. o o o o i i e 146

CONTENTS

C.9 Command-linehandlingerrors 149
C.10 Assembler reader errors. o o e e e 151
C.10.1 General assemblererrors 151
C.10.2 1386 SPECI CEITOIS .« v v v v et e e e e e e e e e e e 153
C.10.3 MBBK SPECI CEITOIS. . . . v v o e e e e e e e 155
Runtimeerrors 156
The Floating Point Coprocessor emulator 159
A samplegdb.ini le 161
Optionsand settings 162

Chapter 1

| ntroduction

1.1 About thisdocument

This is the user's manual for Free Pascal. It describes the installation and use of the Free Pascal
compiler on the different supported platforms. It does not attempt to give an exhaustive list of all
supported commands, nor a de nition of the Pascal language. Look at the Reference guide for
these things. For a description of the possibilities and the inner workings of the compiler, see the
Programmers guide. In the appendices of this document you will nd lists of reserved words and

compiler error messages (with descriptions).

This document describes the compiler as it is/functions at the time of writing. First consult the
README and FAQ les, distributed with the compiler. The README and FAQ les are, in case
of conict with this manual, authoritative.

1.2 About the compiler

Free Pascal isa32-bit compiler for thei386 and m68k processors. Currently, it supportsthefollowing
operating systems:

e DOS

e LINUX

e AMIGA (version 0.99.5 only)
e WINDOWS

e 0S/2 (optionally using the EMX package, so it also works on DOS/Windows)
e FREEBSD

e BEOS (under development)

e SOLARIS (under devel opment)
e PALMOS (under development)
e NETBSD

e NETWARE

e OPENBSD (under development)

file:../ref/ref.html
file:../prog/prog.html

CHAPTER 1. INTRODUCTION

Free Pascal is designed to be, as much as possible, source compatible with Turbo Pascal 7.0 and
Delphi 5 (although this goal is not yet attained), but it also enhances these languages with elements
like operator overloading. And, unlike these ancestors, it supports multiple platforms.

It also differs from them in the sense that you cannot use compiled units from one system for the
other, i.e. you cannot use TP compiled units.

Also, at the time of writing, there is a beta version of an Integrated Devel opment Environment (IDE)
available for Free Pascal.

Free Pascal consists of three parts:
1. The compiler program itself.
2. The Run-Time Library (RTL).

3. Utility programs and units.

Of these you only need the rst two, in order to be able to use the compiler. In this document, we
describe the use of the compiler. The RTL is described in the Reference guide.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the following addresses:

e http://www.freepascal.org/ is the main site. It contains also useful mail addresses and links to
other places. It also contains the instructions for inscribing to the mailing-list.

e http://community.freepascal .org: 10000/ is aforum site where questions can be posted.

Other than that, some mirrors exist.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me at michael @freepascal .org. .

Let’s get on with something useful.

file:../ref/ref.html
http://www.freepascal.org
http://community.freepascal.org:10000/
mailto:michael@freepascal.org

Chapter 2

|nstalling the compiler

2.1 Beforelnstallation : Requirements

2.1.1 System requirements
The compiler needs at least the following hardware:

1. An Intel 80386 or higher processor (for the intel version). A coprocessor is not required,
although it will slow down your program'’s performance if you do oating point calculations
without a coprocessor, since emulation will be used.

2. 32 Megabytes of free memory.
3. At least 8 Megabytes free disk space.

2.1.2 Software requirements
Under DOS

The bosdistribution contains al the lesyou need to run the compiler and compile pascal programs.

Under UNIX
Under UNIX systems (such as LINUX) you need to have the following programsinstalled :
1. GNU as, the GNU assembler.
2. GNU Id, the GNU linker.
3. Optionaly (but highly recommended) : GNuU make. For easy recompiling of the compiler and
Run-Time Library, thisis needed.

Under Windows

The WiNDows distribution contains all the les you need to run the compiler and compile pascal
programs. However, it may be agood ideato install the mingw32 tools or the cygwi n devel opment
tools. Linksto both of these tools can befound onht t p: / / www. f r eepascal . org

CHAPTER 2. INSTALLING THE COMPILER

Under OS2

While the Free Pascal distribution comeswith all necessary tools, it isagood ideato install the EMX
extender in order to compile and run programs with the Free Pascal compiler. The EMX extender
can be found on:

http://ww. | eo. or g/ pub/ conp/ os/ 0s2/ | eo/ gnu/ emx+gcc/ i ndex. ht ni

2.2 Installing the compiler.

The ingtallation of Free Pascal is easy, but is platform-dependent. We discuss the process for each
platform separately.

2.2.1 Installing under DOS or Windows
Mandatory installation steps.

First, you must get the latest distribution les of Free Pascal. They comeaszip les, which you must
unzip rst, or you can download the compiler as a series of separate les. Thisis especially useful if
you have a slow connection, but it is also nice if you want to install only some parts of the compiler
distribution. The distribution zip le contains an installation program INSTALL.EXE. You must run
this program to install the compiler.

The screen of the installation program looks like gure 2.1.

Figure 2.1: The Dos install program screen

[+]

General W

Continue

The program allows you to select:

e What components you wish to install. e.g do you want the sources or not, do you want docs or
not. lItemsthat you didn’t download when downloading as separate les, will not be enabled,
i.e. you can’t select them.

e Where you want to install (the default locationis C: \ PP).

10

CHAPTER 2. INSTALLING THE COMPILER

Figure 2.2:

Win32 C
[¥] BaSiE system for Win32 (required) {7345 KB)

Continue

In order to run Free Pascal from any directory on your system, you must extend your path variable to
contain the C: \ PP\ Bl Ndirectory. Usually thisis donein the AUTOEXEC.BAT le. It should look
something like this:

SET PATH=%ATHY C: \ PP\ Bl N\ GO32V2
for bos or

SET PATH=9%°ATHY C: \ PP\ BI N\ W N32
for WiNDows and nally

SET PATH=%PATHY C. \ PP\ BI N\ OS2

for 0s/2. (Again, assuming that you installed in the default location).

On 0s/2, Free Pascal installs some libraries from the EMX package if they were not yet installed
(theinstaller will notify you if they should be installed). They are located in the

C:\ PP\ DLL

directory. The name of this directory should be added to the LI BPATH directive in the con g.sys
le:

LI BPATH=XXX; C: \ PP\ DLL

Obviously, any existing directories in the LI BPATH directive (indicated by XXX in the above exam-
ple) should be preserved.

Optional Installation: The coprocessor emulation

For people who have an older CPU type, without math coprocessor (i1387) it is necessary to install a
coprocessor emulation, since Free Pascal uses the coprocessor to do al oating point operations.

11

CHAPTER 2. INSTALLING THE COMPILER

Theinstallation of the coprocessor emulation is handled by theinstallation program (INSTALL.EXE)
under DOs and WINDOWS.

2.2.2 Installing under Linux
Mandatory installation steps.

The LINUX distribution of Free Pascal comesin three forms:

e atar.gz version, also available as seperate les.
e a.rpm (Red Hat Package Manager) version, and

e a.deb (Debian) version.

All of these packages contain a ELF version of the compiler binaries and units. the older aout
binaries are no longer distributed, although you still can use the comiler on an aout system if you
recompileit.

If you use the .rpm format, installation is limited to
rpm-i fpc-pascal - XXX. rpm

(XXX isthe version number of the.rpm le)
If you use Debian, installation is limited to

dpkg -i fpc- XXX. deb

Here again, XXX is the version number of the .deb le.

You need root access to install these packages. The .tar le alows you to do an installation if you
don’t have root permissions.

When downloading the. t ar le, or the separate les, installation is more interactive.

In case you downloaded the .tar le, you should rst untar the |e, in some directory where you have
write permission, using the following command:

tar -xvf fpc.tar

We supposed here that you downloaded the le fpc.tar somewhere from the Internet. (The real
lename will have some version number in it, which we omit here for clarity.)

When the leisuntarred, you will be left with more archive les, and an install program: an instal-
lation shell script.

If you downloaded the les as separate les, you should at least download the install.sh script, and
thelibraries (in libs.tar.gz).

To install Free Pascal, all that you need to do now is give the following command:
.linstall.sh

And then you must answer some questions. They're very simple, they’re mainly concerned with 2
things:

1. Placeswhere you can install different things.

2. Deciding if youwant to install certain components (such as sources and demo programs).

12

CHAPTER 2. INSTALLING THE COMPILER

The script will automatically detect which components are present and can be installed. It will only
offer to install what has been found. because of this feature, you must keep the original names when
downloading, since the script expectsthis.

If you run the installation script asther oot user, you can just accept all installation defaults. If you
don'trunasr oot , you must take care to supply the installation program with directory names where
you have write permission, as it will attempt to create the directories you specify. In principle, you
can install it wherever you want, though.

At the end of installation, the installation program will generate a con guration le (fpc.cfg) for the
Free Pascal compiler which re ects the settings that you chose. It will install this le in the /etc
directory or in your home directory (with name .fpc.cfg) if you do not have write permission in the
/etc directory. It will make a copy in the directory where you installed the libraries.

The compiler will rst look for a le .fpc.cfg in your home directory before looking in the /etc
directory.

2.3 Optional con guration steps

On any platform, after installing the compiler you may wish to set some environment variables. The
Free Pascal compiler recognizes the following variables:

e PPC_EXEC_PATH contains the directory where support lesfor the compiler can be found.

e PPC_CONFI G_PATH speci es an alternate path to nd the fpc.cfg.

e PPC_ERROR_FI LE speci esthe path and name of the error-de nition le.

e FPCDI R speci estheroot directory of the Free Pascal installation. (e.g: C: \ PP\ BI N)
These locations are, however, set in the sample con guration le which is built at the end of the

installation process, except for the PPC_CONFI G_PATH variable, which you must set if you didn’'t
install things in the default places.

2.4 Before compiling

Also distributed in Free Pascal is a README le. It contains the latest instructions for installing
Free Pascal, and should always beread rst.

Furthermore, platform-speci ¢ information and common questions are addressed in the FAQ. It
should be read before reporting any bug.

2.5 Testing the compiler

After theinstallation is completed and the optional environment variables are set as described above,
your rst program can be compiled.

Included in the Free Pascal distribution are some demonstration programs, showing what the com-
piler can do. You can test if the compiler functions correctly by trying to compile these programs.

The compiler iscalled

o fpc.exe under WINDOWS, 0S/2 and DOS.

e fpc under most other operating systems.

13

CHAPTER 2. INSTALLING THE COMPILER

To compile aprogram (e.g deno\ hel | 0. pp) smply type:
fpc hello

at the command prompt. If you don’'t have acon guration le, then you may need to tell the compiler
whereit can nd the units, for instance as follows:

fpc -Fuc:\pp\units\go32v2\rtl hello
under DOS, and under LINUX you could type
fpc -Fu/usr/lib/fpc/ NNNWunits/linux/rtl hello

(replace NNN with the version number of Free Pascal that you are using). Thisis, of course, assuming
that you installed under C. \ PP or /usr/lib/fpc/NNN, respectively.

If you got no error messages, the compiler has generated an executable called hello.exe under bos,
0s/2 or WINDOWS, or hello (no extension) under UNIX and most other operating systems.

To execute the program, simply type:
hel | o
If al went well, you should see the following friendly greeting:

Hel l o world

14

Remark:

Chapter 3

Compiler usage

Here we describe the essentials to compile a program and a unit. For more advanced uses of the
compiler, see the section on con guring the compiler, and the Programmers guide.

The examples in this section suppose that you have a fpc.cfg which is set up correctly, and which
contains at least the path setting for the RTL units. In principlethis leisgenerated by theinstallation
program. You may have to check that it isin the correct place (see section 5.2 for more information
onthis).

3.1 Filesearching

Before you start compiling a program or a series of units, it isimportant to know where the compiler
looks for its source les and other les. In this section we discuss this, and we indicate how to
in uence this.

The use of slashes (/) and backslashes (\) as directory separators is irrelevant, the compiler will
convert to whatever character is used on the current operating system. Examples will be given using
dashes, since this avoids problems on UNIX systems (such as LINUX).

3.1.1 Command line les
The lethat you specify on the command line, such asin

fpc foo.pp

will belooked for ONLY in the current directory. If you specify a directory in the lename, then the
compiler will look in that directory:

fpc subdir/foo.pp

will look for foo.pp in the subdirectory subdir of the current directory.

Under case sensitive le systems (such as LINUX and UNIX), the name of this leis case sensitive,
under other operating systems (such as Dos, WINDOWS NT, 0s/2) thisis not the case.

3.1.2 Unit les

When you compile a unit or program that needs other units, the compiler will look for compiled
versions of these unitsin the following way:

15

file:../prog/prog.html

CHAPTER 3. COMPILER USAGE

1. It will look in the current directory.
2. It will look in the directory where the source leis being compiled.
3. It will look in the directory where the compiler binary is.

4. 1t will look in all the directories speci ed in the unit search path.

You can add a directory to the unit search path with the (- Fu, (see page 5.1.3)) option. Every
occurrence of one of this options will insert a directory to the unit search path. i.e. the last path on
the command line will be searched rst.

The compiler adds several paths to the unit search path:

1. The contents of the environment variable XXUNI TS, where XX must be replaced with one of
the supported targets: GO32V2, LI NUX,W N32, OS2, BECS, FREEBSD, NETBSD.

2. The standard unit directory. This directory is determined from the FPCDI R environment vari-
able. If thisvariableis not set, then it is defaulted to the following:

e On LINUX:

fusr/local/lib/fpc/FPCVERSI ON
or
fusr/1ib/fpc/ FPCVERSI ON

whichever isfound rst.

e On other OSes: the compiler binary directory, with ’../" appended to it, if it exists. For
instance, on Windows, this would mean

C\FPC\ 1. 9. 6\ uni ts\i386-w n32
Thisisassuming the compiler was installed in the directory
C\FPC\1.9.6

After this directory is determined , the following paths are added to the search path:

(a) FPCDIR/units’FPCTARGET
(b) FPCDIR/units FPCTARGET/tl

Here target must be replaced by the name of the target you are compiling for: thisis a combi-
nation of CPU and OS, so for instance

/fusr/local/lib/fpc/1.9.6/units/i386-1Iinux/
or, when cross-compiling
fusr/local/lib/fpc/1l.9.6/units/i386-w n32/

Note that (for optimization) the compiler will drop any non-existing paths from the search path, i.e.
the existence of the path will be tested.

You can see what paths the compiler will search by giving the compiler the - vu option.

On systems where lenamesto lower-case (such as UNIX and LINUX), the compiler will rst convert
the lename of a unit to all-lowercase. Thisis necessary, since Pascal is case-independent, and the
statementsUses Unit 1; oruses unit1; should have the same effect.

Also, unit names that are longer than 8 characterswill rst be looked for with their full length. If the
unit is not found with this name, the name will be truncated to 8 characters, and the compiler will
look again in the same directories, but with the truncated name.

For instance, suppose that the le foo.pp needs the unit bar. Then the command

16

CHAPTER 3. COMPILER USAGE

fpc -Fu.. -Fuunits foo.pp
will tell the compiler to look for the unit bar in the following places:

. Inthe current directory.
. Inthe directory where the compile binary is (not under LINUX).

1

2

3. Inthe parent directory of the current directory.
4. Inthe subdirectory units of the current directory
5

. Inthe standard unit directory.

If the compiler ndsthe unit it needs, it will look for the source le of this unit in the same directory
where it found the unit. If it nds the source of the unit, then it will compare the letimes. If the
source le was modi ed more recent than the unit le, the compiler will attempt to recompile the
unit with this source le.

If the compiler doesn’'t nd a compiled version of the unit, or when the - B option is speci ed, then
the compiler will ook in the same manner for the unit source le, and attempt to recompileit.

It is recommended to set the unit search path in the con guration le fpc.cfg. If you do this, you
don't need to specify the unit search path on the command-line every time you want to compile
something.

3.1.3 Include les

If you include lesin your source withthe {$I fil enane} directive, the compiler will look for
it in the following places:

1. It will look in the path speci ed in the include le name.
2. It will look in the directory where the current source leis.

3. itwill look in all directories speci ed in theinclude le search path.

You can add lestotheinclude le search pathwiththe -1, (seepage5.1.3) or - Fi , (seepage5.1.3)
options.

As an example, consider the following include statement in a le units/foo.pp:
{$i ../bar.inc}

Then the following command :
fpc -lincfiles units/foo.pp
will cause the compiler to look in the following directories for bar.inc:

1. the parent directory of the current directory
2. the units subdirectory of the current directory

3. theinc les directory of the current directory.

17

CHAPTER 3. COMPILER USAGE

3.1.4 Object les

When you link to object les(usingthe {$L fi | e. o} directive, the compiler will look for this le
in the same way asit looks for include les:

1. It will look in the path speci ed in the object |e name.
2. 1t will look in the directory where the current source leis.

3. itwill look in all directories speci ed in the object |e search path.

You can add lesto the object le search path with the - Fo, (see page 5.1.3) option.

3.1.5 Con guration le

Starting from version 1.0.6 of the compiler, usage of the le ppc386.cfg is considered deprecated.
The le should now be called fpc.cfg and will work for all processor targets. For compatibility,
fpc.cfg will be searched rst, and if not found, the le ppc386.cfg will be used.

Unless you specify the - n, (see page 5.1.1) option, the compiler will look for a con guration le
fpc.cfg in the following places:

e Under UNIX (such asLINUX)

1. The current directory.
2. Inyour home directory, it looks for .fpc.cfg.

3. The directory speci ed in the environment variable PPC_CONFI G_PATH, and if it is
not set, it will look in the etc directory above the compiler directory. (for instance, if the
compiler isin /usr/local/bin, it will look in /usr/local/etc)

4. Inthedirectory /etc.
e Under al other OSes:

1. The current directory.
2. If itis set, the directory speci ed in the environment variable. PPC_CONFI G_PATH.
3. Thedirectory where the compiler is.

3.1.6 Aboutlong lenames

Free Pascal can handlelong lenames under W INDOWS; it will use support for long lenamesif itis
available.

If no support for long lenamesis present, it will truncate unit names to 8 characters.

It is not recommended to put units in directories that contain spaces in their names, since the linker
doesn’'t understand such lenames.

3.2 Compiling aprogram

Compiling a program is very simple. Assuming that you have a program source in the le prog.pp,
you can compile this with the following command:

fpc [options] prog.pp

18

Remark:

CHAPTER 3. COMPILER USAGE

The square brackets[] indicate that what is between them is optional.

If your program le has the .pp or .pas extension, you can omit this on the command line, e.g. in
the previous example you could have typed:

fpc [options] prog

If all went well, the compiler will produce an executable le. You can execute it straight away, you
don’t need to do anything else.

You will notice that there is aso another le in your directory, with extensions .o0. This contains the
object lefor your program. If you compiled a program, you can delete the object le(.0), but not if
you compiled a unit.

Then the object e contains the code of the unit, and will be linked in any program that uses the unit
you compiled, so you shouldn’t remove it.

3.3 Compiling a unit

Compiling a unit is not essentially different from compiling a program. The difference ismainly that
thelinker isn’t called in this case.

To compileaunitinthe le foo.pp, just type:
fpc foo

Recall the remark about |e extensions in the previous section.
When al went well, you will be left with 2 (two) unit les:

1. foo.ppu Thisisthe le describing the unit you just compiled.

2. foo.o This le contains the actual code of the unit. This le will eventually end up in the
executables.

Both les are needed if you plan to use the unit for some programs. So don't delete them. If you
want to distribute the unit, you must provide both the .ppu and .0 le. One is useless without the
other.

Under LINUX and UNIX, a unit source le must have a lowercase lename. Since Pascal is case

independent, you can specify the names of unitsin the uses clause in either case. To get a unique
lename, the Free Pascal compiler changes the name of the unit to all lowercase when looking for

unit les.

The compiler produces lowercase les, so your unit will be found, even if your source le has up-
percase lettersin it. Only when the compiler tries to recompile the unit, it will not nd your source
because of the uppercase etters.

3.4 Units, librariesand smartlinking

The Free Pascal compiler supports smartlinking and the creation of libraries. However, the default
behaviour is to compile each unit into 1 big object le, which will be linked as a whole into your
program.

Not only isit possible to compile ashared library under WiNDOWS and LINUX, but also it is possible
to take existing units and put them together in 1 static or shared library (using the ppumove tool)

19

CHAPTER 3. COMPILER USAGE

3.5 Reducing the size of your program

When you created your program, it is possible to reduce its size. This is possible, because the
compiler leaves a lot of information in the program which, strictly speaking, isn't required for the
execution of it. The surplus of information can be removed with a small program called strip.The
usage issimple. Just type

strip prog

On the command line, and the strip program will remove all unnecessary information from your
program. This can lead to size reductions of up to 30 %.

Remark: Inthe WIN32 version, strip is called stripw.

You can use the - Xs switch to let the compiler do this stripping automatically at program compile
time (the switch has no effect when compiling units).

Another technique to reduce the size of a program is to use smartlinking. Normally, units (including
the system unit) are linked in asawhole. It is however possible to compile units such that the can be
smartlinked. This means that only the functions and procedures are linked in your program, leaving
out any unnecessary code. Thistechnique is described in full in the programmers guide.

20

Chapter 4

Compiling problems

4.1 General problems

e |O-error -2 at ... : Under LINUX you can get this message at compiler startup. It means
typically that the compiler doesn't nd the error de nitions le. You can correct this mistake
with the - Fr , (see page 5.1.3) option under LINUX.

e Error : Filenot found : xxx or Error: couldn’t compile unit xxx: This typically happens
when your unit path isn’'t set correctly. Remember that the compiler looks for units only in
the current directory, and in the directory where the compiler itself is. If you want it to look
somewhere else too, you must explicitly tell it to do so using the - Fu, (see page 5.1.3) option.
Or you must set op acon guration le.

4.2 Problemsyou may encounter under DOS

No space in environment.

An error message like this can occur, if you call SET_PP. BAT in the AUTOEXEC.BAT.

To solve this problem, you must extend your environment memory. To do this, search alinein
the CONFIG.SYS like

SHELL=C: \ DOS\ COMVAND. COM
and change it to the following:
SHELL=C: \ DOS\ COMVAND. COM / E: 1024

You may just need to specify ahigher value, if this parameter is already set.

Coprocessor missing
If the compiler writes amessage that there is no coprocessor, install the coprocessor emulation.

Not enough DPM| memory
If you want to use the compiler with DPM you must have at least 7-8 MB free DPM memory,
but 16 Mb is a more realistic amount.

21

Chapter 5

Compiler con guration

The output of the compiler can be controlled in many ways. This can be done essentially in two
distinct ways:

e Using command-line options.

e Using the con guration le: fpc.cfg.
The compiler rst readsthe con guration le. Only then the command line options are checked. This
creates the possibility to set some basic options in the con guration le, and at the same time you
can still set some speci ¢ options when compiling some unit or program. First we list the command

line options, and then we explain how to specify the command line options in the con guration le.
When reading this, keep in mind that the options are case sensitive.

5.1 Using the command-line options

The available options for version 1.0.6 of the compiler are listed by category (see appendix A for a
listing as generated by the compiler):

5.1.1 General options
-h if you specify this option, the compiler outputs alist of all options, and exits after that.

-? idem as- h, waiting after every screenfull for the enter key.

-i This option tells the compiler to print the copyright information. You can give it an option, as
- i XXX where xxx can be one of the following:
D : Returnsthe compiler date.
V : Returnsthe compiler version.
SO : Returnsthe compiler OS.
SP : Returns the compiler processor.
TO : Returnsthetarget OS.
TP : Returns the target Processor.

-| This option tells the compiler to print the Free Pascal logo on standard output. It also gives you
the Free Pascal version number.

-n Tellsthe compiler not to read default the con guration le. You can still pass acon guration le
with the @option.

22

CHAPTER 5. COMPILER CONFIGURATION

5.1.2 Options for getting feedback
-VxXxX Beverbose. xxx isacombination of the following :

e e : Tellsthe compiler to show only errors. This option is on by default.
e i : Tellsthe compiler to show some general information.

e w: Tellsthe compiler to issue warnings.

e n : Tellsthe compiler to issue notes.

e h: Tellsthe compiler to issue hints.

e | : Tellsthe compiler to show the line numbers asit processesa le. Numbers are shown
per 100.

e U : Tellsthe compiler to print information on the unitsit loads.
e t : Tellsthe compiler to print the names of the lesit tries to open.

e p : Tellsthe compiler to print the names of procedures and functions as it is processing
them.

e C : Tellsthe compiler to warn you when it processes a conditional.

e m: Tellsthe compiler to write which macros are de ned.

e d: Tellsthe compiler to write other debugging info.

e a: Tellsthe compiler towrite all possibleinfo. (thisisthe same as specifying all options)

e 0 : Tellsthe compiler to write no messages. Thisis useful when you want to override the
default setting in the con guration le.

e b : Tellsthe compiler to show all procedure declarations if an overloaded function error
occurs.

e X : Tellsthe compiler to output some executable info (for Win32 platform only).

e 1 : Rhide/GCC compatibility mode: formatsthe errors differently, so they are understood
by RHIDE.

V writea le fpcdebug.txt with lots of debugging info. Mainly for the compiler devel opers.

5.1.3 Options concerning les and directories

-exXXX XXX speci esthe directory where the compiler can nd the executables as (the assembler) and
Id (the linker).

-FaxXYZ loads units XYZ after the system unit, but before any other unit isloaded. XYZ isacomma-
separated list of unit names. This can only be used for programs, and has the same effect asiif
XYZ were inserted as the rst item in the program’s uses clause.

-FcXXX' set the input codepage to XXX, Experimental.
-FD sameas-e.
-Fexxx This option tells the compiler to write errors, etc. to the le named xxx.

-FExxx tells the compiler to write the executable and units in directory xxx instead of th current
directory.

-Fixxx Addsxxx to theinclude le search path.
-FIxxx Addsxxx to the library searching path, and is passed to the linker.

-FLxxx (LINUX only) Tells the compiler to use xxx as the dynamic linker. Default this is /lib/ld-
linux.so.2, or /HIib/ld-linux.so.1, depending on which oneisfound rst.

23

CHAPTER 5. COMPILER CONFIGURATION

-Foxxx Adds xxx to the object le search path. This path is used when looking for lesthat need to
belinked in.

-Frxxx xxx speci esthe le which contain the compiler messages. Default the compiler has built-in
messages. Specifying this option will override the default messages.

-Fuxxx Add xxx to the unit search path. Units are rst searched in the current directory. If they are
not found there then the compiler searches them in the unit path. You must always supply the
path to the system unit.

-FUxxx Tells the compiler to write units in directory xxx instead of the current directory. It over-
ridesthe - FE option.

-Ixxx Add xxx to theinclude le search path. This option has the same effect as - Fi .

5.1.4 Options controlling the kind of output.

for more information on these options, see a'so Programmers guide

-a Tells the compiler not to delete the assembler les it generates (not when using the internal as-
sembler). Thisaso counts for the (possibly) generated batch script.

-al Tellsthe compiler to include the sourcecode linesin the assembler e as comments.

-an Tellsthe compiler to write node information in the assember |e (nodes are the way the compiler
represents statements or parts thereof internally). Thisis primarily intended for debugging the
code generated by the compiler.

-ap usepipesinstead of creating temporary assembler les. Thismay speed up the compiler on 0s/2
and LINUX. Only with assemblers (such as GNU if the internal assembler is used.

-ar tellsthecompiler tolist register alocation and releaseinfoin the assembler le. Thisisprimarily
intended for debugging the code generated by the compiler.

-at tellsthe compiler to list information about temporary allocations and deall ocations in the assem-
bler le.

-Axxx speci eswhat kind of assembler should be generated . Here xxx isone of the following :

default usethe built-in default.

as assemble using GNU as.

nasmcoff coff (Go32v2) leusing Nasm.

nasmelf elf32 (Linux) leusing Nasm.

nasmobj object le using Nasm.

masm object le using Masm (Microsoft).

tasm object le using Tasm (Borland).

elf elf32 (Linux) using internal writer.

coff coff object le (Go32v2) using the internal binary object writer.
pecoff pecoff object le (Win32) using the internal binary object writer.

-B tellsthe compiler to re-compile all used units, even if the unit sources didn’t change since the last
compilation.

-b tellsthe compiler to generate browser info. Thisinformation can be used by an Integrated Devel-
opment Environment (IDE) to provide information on classes, objects, procedures, types and
variablesin a unit.

24

file:../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

-bl isthe same as - b but also generates information about local variables, types and procedures.
-Cc set the default calling convention used by the compiler.

-CD Create adynamic library. Thisis used to transform unitsinto dynamically linkable libraries on
LINUX.

-Ce Emulate oating point operations.

-CfXXX settheused oating point processor.

-Cg enable generation of PIC code.

-Chxxx Reserves xxx bytes heap. xxx should be between 1024 and 67107840.

-Ci Generate Input/Output checking code. In case some input/output code of your program returns
an error status, the program will exit with a run-time error. Which error is generated depends
on the /O error.

-Cn Omit the linking stage.

-Co Generate Integer over ow checking code. In case of integer errors, a run-time error will be
generated by your program.

-Cr Generate Range checking code. In case your program acesses an array element with an in-
valid index, or if it increases an enumerated type beyond it’'s scope, a run-time error will be
generated.

-CR Generate checks when calling methods to verify if the virtual method table for that object is
valid.

-Csxxx Set stack sizeto xxX.

-Ct generate stack checking code. In case your program performs a faulty stack operation, a run-
rime error will be generated.

-CX Create a smartlinked unit when writing aunit. smartlinking will only link in the code parts that
are actually needed by the program. All unused codeis left out. This can lead to substantially
smaller binaries.

-dxxx De nethe symbol name xxx. This can be used to conditionally compile parts of your code.
-D generate aDEF le (for 0S/2)
-Dd set the description of the executablée/library (Windows)
-Dv set the version of the executable/library (Windows)
-E Sameas - Cn.
-g Generate debugging information for debugging with gdb

-gc generate checks for pointers. This must be used with the - gh command-line option. When this
optionsis enabled, it will verify that all pointer accesses are within the heap.

-gd generate debugging info for dbx.
-gg idemas-g.

-gh use the heaptrc unit (see Unit reference). (produces a report about heap usage after the program
exits)

25

file:../units/units.html

CHAPTER 5. COMPILER CONFIGURATION

-gl use the lineinfo unit (see Unit reference). (produces le name/line number information if the
program exits due to an error.)

-gv emit info for valgrind.

-gw emit dwarf debugging info.

-kxxx pass xxx to the linker.

-Oxxx optimize the compiler’s output; xxx can have one of the following values :

g optimizefor size, try to generate smaller code.

G optimize for time, try to generate faster code (default).

r keep certain variablesin registers (experimental, use with caution).
u Uncertain optimizations

1 Leve 1 optimizations (quick optimizations).

2 Level 2 optimizations (- OL plus some slower optimizations).
3 Level 3optimizations (- Q2 plus - Qu).
Pn (Intel only) Specify processor: n can be one of

1 optimize for 386/486
2 optimize for Pentium/PentiumMMX (tm)
3 optimizations for PentiumPro/Pl1/Cyrix 6x86/K6 (tm)

The exact effect of these optimizations can be found in the Programmers guide.

-oxxx Tellsthe compiler to use xxx asthe name of the output |e (executable). Only with programs.

-pg Generate pro ler code for gprof. This will de ne the symbol FPC_PROFI LE, which can be
used in conditional de nes.

-s Tells the compiler not to call the assembler and linker. Instead, the compiler writes a script,
PPAS.BAT under DOs, or ppas.sh under LINUX, which can then be executed to produce an
executable. This can be used to speed up the compiling process or to debug the compiler’'s
output. This option can take some extra parameter, mainly used for cross-compilation. It can
have one of the following values:

h Generate script to link on host. The generated script can be run on the compilation platform

(host platform).

t Generate script to link on target platform. The generated script can be run on the target

platform. (where the binary must be run)

r Skip register alocation phase (optimizations will be disabled).

-Txxx Speci esthe target operating system. xxx can be one of the following:

emx : OS/2viaEMX (and DOSviaEMX extender)
freebsd : FreeBSD.

go32v2 : Dos and version 2 of the DJ DEL ORIE extender.
linux : LINUX.

netbsd : NetBSD.

netware : Novell Netware Module (clib)

netwlibc : Novell Netware Module (libc)

0s2 : 0OS/2 (2.x) using the EMX extender.

26

file:../units/units.html
file:../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

sunos: SunOS/Solaris.

e watcom : watcom compatible DOS extender
e wdosx : WDOSX extender.

e win32: WINDOWS 32 bit.

-uxxx Unde ne the symbol xxx. Thisisthe opposite of the - d option.

-Ur Generate release unit les. These leswill not be recompiled, even when the sources are avail-
able. Thisis useful when making release distributions. This also overrides the - B option for
release mode units.

-W set some WINDOWS or 0s/2 attributes of the generated binary. It can be one or more of the
following
Bhhh set preferred base address to hhh (a hexadecimal address)
C Generate aconsole application (+) or agui application (-).
D Forceuse of Def lefor exports.
F Generate a FS application (+) or aconsole application (-).
G Generate a GUI application (+) or a console application (-).
N Do not generate rel ocation section.
R Generate arelocation section.
T Generate a TOOL application (+) or aconsole application (-).

-XXx executable options. This tells the compiler what kind of executable should be generated. the
parameter X can be one of the following:

e C: (LINUX only) Link with the C library. You should only use this when you start to port
Free Pascal to another operating system.

d don't use the standard library path. This is needed for cross-compilation, to avoid
linking with the host platform’s libraries.

D : Link with dynamic libraries (de nesthe FPC_LI NK_DYNAM C symbol)
pXXX : Prepend binutils names with XXX for cross-compiling.

rXXX : set library path to XXX.

s: Strip the symbols from the executable.

S: Link with static units (de nesthe FPC_LI NK_STATI C symbol)

t: link static. It passesthe - st at i ¢ option to the linker.

X : Link with smartlinked units (de nesthe FPC_LI NK_SMART symbol)

5.1.5 Options concerning the sources (language options)

for more information on these options, see a'so Programmers guide

-Mmode set language mode to node, which can be one of the following:

delphi triesto be Delphi compatible. Thisis more strict than the obj f pc mode, since some
Free Pascal extensions are switched off.

fpc free pascal dialect (default)

gpc triesto be gpc compatible.

macpas tries to be compatible to the macintosh pascal dialects.

27

file:../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

objfpc switch some Delphi 2 extensions on. This is different from Delphi mode. because
some Free Pascal constructs are till available.

tp triesto be TP/BP 7.0 compatible. This means, no function overloading etc.

-Rxxx Speci es what kind of assembler you use in your asmassembler code blocks. Here xxx is
one of the following:

att asmblocks contain AT& T-style assembler. Thisis the default style.
intel asmblocks contain Intel-style assembler.

direct asmblocks should be copied as-is in the assembler, only replacing certain variables.
le.

-S2 Switch on Delphi 2 extensions (obj f pc mode). Deprecated, use - Mobj f pc instead.

-Sa Include assert statements in compiled code. Omitting this option will cause assert statements to
be ignored.

-Sc Support C-style operators, i.e. *=, +=, /= and -=.
-Sd Tellsthe compiler to be Delphi compatible. Deprecated, use - Miel phi instead.

-SeN The compiler stops after the N-th error. Normally, the compiler tries to continue compiling
after an error, until 50 errors are reached, or afatal error isreached, and then it stops. With this
switch, the compiler will stop after the N-th error (if N is omitted, a default of 1 isassumed).

-Sg Support thel abel and got o commands. By default these are not supported. You must also
specify this option if you use labels in assembler statements. (if you use the AT&T style
assember)

-Sh Use ansistrings by default for strings. If this keyword is speci ed, the compiler will interpret
thest ri ng keyword asaansistring. Otherwise it is supposed to be a short strings (TP style).

-Si Support C++ style INLINE.

-SIXXX set interfaces styleto XXX.

-Sm Support C-style macros.

-So Try to be Borland TP 7.0 compatible. Deprecated, use - M p instead.

-Sp Try to begpc (GNU pascal compiler) compatible. Deprecated, use - Mgpc instead.
-Ss The name of constructors must bei ni t , and the name of destructors should be done.
-St Allow the st at i ¢ keyword in objects.

-Un Do not check the unit name. Normally, the unit name is the same as the Iename. This option
allows both to be different.

-Us Compile a system unit. This option causes the compiler to de ne only some very basic types.

28

CHAPTER 5. COMPILER CONFIGURATION

5.2 Usingthecon guration le

Using the con guration le fpc.cfg isan aternative to command line options. When a con guration
leisfound, it isread, and thelinesin it are treated like you typed them on the command line. They
are treated before the options that you type on the command line.

You can specify comments in the con guration le with the # sign. Everything from the # on will
be ignored.

The algorithm to determine which leisused asacon guration leisdecribedin 3.1.5 on page 18.

When the compiler has nished reading the con guration le, it continues to treat the command line
options.

One of the command-line options allows you to specify asecond con guration le: Specifying @foo
on the command line will open le foo, and read further options from there. When the compiler has
nished reading this le, it continuesto process the command line.

The con guration le allows some kind of preprocessing. It understands the following directives,
which you should place on the rst column of aline:

FDEF

FNDEF
#EL SE
#ENDIF
#DEFINE
#UNDEF
#WRITE
#NCLUDE
#SECTION

They work the same way as their {$...} counterpartsin Pascal. All the default de nes used to com-
pile source code are also de ned while processing the con guration le. For example, if the target
compiler is an intel 80x86 compatile linux platform, both cpu86 and | i nux will be de ned while
interpreting the con guration le. For the possible default de neswhen compiling, consult Appendix
G of the Programmers guide.

What follows is a description of the different directives.

5.2.1 #IFDEF
Syntax:
#| FDEF nane

Linesfollowing #| FDEF are skipped read if the keyword name following it is not de ned.

They areread until the keywords#EL SE or #ENDI F are encountered, after which normal processing
isresumed.

Example:

29

file:../prog/prog.html

CHAPTER 5. COMPILER CONFIGURATION

#| FDEF VERO_99_5
-Fu/usr/1ib/fpc/0.99.5/1inuxunits
#ENDI F

In the above example, /usr/lib/fpc/0.99.5/linuxunits will be added to the path if you're compiling
with version 0.99.5 of the compiler.

5.2.2 #IFNDEF
Syntax:

#1 FNDEF nane

Linesfollowing #| FNDEF are skipped read if the keyword name following it is de ned.

They areread until the keywords#EL SE or #ENDI F are encountered, after which normal processing
isresumed.

Example:
#| FNDEF VERO_99 5

-Fu/usr/1ib/fpc/0.99.6/1inuxunits
#ENDI F

In the above example, /usr/lib/fpc/0.99.6/linuxunits will be added to the path if you're NOT com-
piling with version 0.99.5 of the compiler.

5.2.3 #ELSE
Syntax:

#ELSE

#ELSE can be speci ed after a #1 FDEF or #| FNDEF directive as an aternative. Lines following
#EL SE are skipped read if the preceding #1 FDEF or #1 FNDEF was accepted.

They are skipped until the keyword #ENDI F is encountered, after which normal processing is re-
sumed.

Example:

#| FDEF VERO_99 5
-Fu/usr/lib/fpc/0.99.5/1inuxunits
#ELSE
-Fu/usr/1ib/fpc/0.99.6/1inuxunits
#ENDI F

In the above example, /usr/lib/fpc/0.99.5/linuxunits will be added to the path if you're compiling

with version 0.99.5 of the compiler, otherwise /usr/lib/fpc/0.99.6/linuxunits will be added to the
path.

5.2.4 #ENDIF
Syntax:

30

CHAPTER 5. COMPILER CONFIGURATION

#ENDI F

#ENDI F marks the end of a block that started with #I F(N) DEF, possibly with an #EL SE between
it.

5.2.5 #DEFINE

Syntax:

#DEFI NE nane

#DEFI NE de nes anew keyword. This has the same effect asa - dnanme command-line option.

5.2.6 #UNDEF
Syntax:
#UNDEF nane

#UNDEF un-de nes a keyword if it existed. This has the same effect asa - unane command-line
option.

5.2.7 #WRITE
Syntax:

#WRI TE Message Text

#WRI TE writes Message Text to the screen. This can be useful to display warnings if certain
options are set.

Example:

#| FDEF DEBUG
#WRI TE Setting debuggi ng ON...

-9

#ENDI F

if DEBUGIs de ned, thiswill produce aline
Setting debugging ON...

and will then switch on debugging information in the compiler.

5.2.8 #INCLUDE
Syntax:

#1 NCLUDE fi | enane

#1 NCLUDE instructs the compiler to read the contents of lename before continuing to process
optionsin the current le.

31

CHAPTER 5. COMPILER CONFIGURATION

This can be useful if you want to have a particular con guration le for a project (or, under LINUX,
inyour home directory), but still want to have the global options that are set in aglobal con guration
le.

Example:

#| FDEF LI NUX
#1 NCLUDE /etc/fpc.cfg
#ELSE
#| FDEF GO32V2
#1 NCLUDE c: \pp\bin\fpc.cfg
#ENDI F
#ENDI F

Thiswill include/etc/fpc.cfg if you'reon alinux machine, and will includec: \ pp\ bi n\ f pc. cf g
on ados machine.

5.2.9 #SECTION
Syntax:

#SECTI ON nane

The #SECTI ON directive acts as a#| FDEF directive, only it doesn’t require an #ENDI F directive.
the special name COVMON always exists, i.e. lines following #SECTI ON COMVON are always read.

5.3 Variablesubstitution in paths

To avoid having to edit your con guration les too often, the compiler allows you to specify the
following variablesin the paths that you feed to the compiler:

FPCFULLVERSION isreplaced by the compiler’s version string.
FPCVERSION isreplaced by the compiler’s version string.

FPCDATE isreplaced by the compiler’s date.

FPCTARGET isreplaced by the compiler’s target (combination of CPU-OS)
FPCCPU isalso replaced by the compiler’starget CPU.

FPCOS isreplaced by the compiler's target OS.

To have these variables subsituted, just insert them with a$ prepended, as follows:
-Fu/usr/lib/fpc/ $FPCVERSI ON rt | / $FPCOS

Thisisequivaent to

-Fu/usr/1lib/fpc/0.99.12a/rtl /| inux

If the compiler versionis0. 99. 12a and thetarget osisl| i nux.
These replacemens are valid on the command-line and also in the con guration le.

On thelinux command-line, you must be careful to escapethe $ since otherwise the shell will expand
the variable for you, which may have undesired effects.

32

Remark:

Chapter 6

ThelDE

The IDE (I ntegrated Development Environment) provides a comfortable user interface to the com-
piler. It contains an editor with syntax highlighting, a debugger, symbol browser etc. The IDE is
a text-mode application which has the same look and feel on al supported operating systems. Itis
modelled after the IDE of Turbo Pascal, so many people should feel comfortable using it.

Currently, the IDE is available for Dos, WINDOWS and LINUX.

6.1 First stepswith theDE

6.1.1 Starting the IDE
The IDE is started by entering the command:

fp

at the command line. It can aso be started from a graphical user interface such as WiNDOWS.

Under WINDOWS, it is possible to switch between windowed mode and full screen mode by pressing
ALT-ENTER).

6.1.2 IDE Command line options
When starting the IDE, command line options can be passed:

fp [-option] [-option] ... <file name> ...
Opt i on isone of the following switches (the option letters are case insensitive):

-N (pos only) Do not use long le names. W INDOwWS 95 and later versions of WINDOWS provide
an interface to DOS applications to access long le names. The IDE uses this interface by
default to access les. Under certain circumstances, this can lead to problems. This switch
tellsthe IDE not to use the long lenames.

-C lename This option, followed by a lename, tells the IDE to read its options from lename .
There should be no whitespace between the le name and the - C.

-F use alternative graphic characters. This can be used to run the IDE on LINUX in an X-term or
through atelnet session.

33

CHAPTER 6. THE IDE

-R After starting the IDE, it changes automatically to the directory which was active when the IDE
exited the last time.

-S Disable the mouse. When this option is used, then the mouse is disabled, even if a mouse is
present.

-Tttyname (linux/unix only) Sends program output to tty t t ynane. Thisis useful so one doesn’'t
have to switch between program output and ide all the time.

The les given at the command line are loaded into edit windows automatically.

Remark: Under DOS/Win32, the rst character of acommand-line option canbea / character instead of a-
character. So/ Sisequivaentto- S.

6.1.3 The IDE screen
After start up, the screen of the IDE can look like gure (6.1).

Figure 6.1: The IDE screen immediately after startup
: Ot b

F1l Help F3 Open Alt+F9 Compile F9 Make ATt+F10 Local menu 1967K

At top of the screen the menu bar isvisible, at the bottom the status bar. The empty space between
them is called the desktop.

The status bar shows the keyboard shortcuts for frequently used commands, and allows quick access
to these commands by clicking them with the mouse. At the right edge of the status bar, the current
amount of unused memory is displayed. Thisis only an indication, since the IDE tries to allocate
more memory from the operating system if it runs out of memory.

The menu provides access to al of the IDE’s functionality, and at the right edge of the menu, a clock
is displayed.

The IDE can be |eft by selecting " Filg|Exit" inthe menu * or by pressing ALT-X.

Remark: If a le fp.ans isfound in the current directory, then it isloaded and used to paint the background.
This le should contain ANSI drawing commands to draw on a screen.

1" FilglExit" means select the item’ Exit’ in the menu’File'.

CHAPTER 6. THE IDE

6.2 NavigatinginthelDE

The IDE can be navigated both with the keyboard and with a mouse, if the system is equipped with
amouse.

6.2.1 Using the keyboard
All functionality of the IDE is available through use of the keyboard.

e Itisused for typing and navigating through the sources.
e Editing commands such as copying and pasting text.
e Moving and resizing windows.

e It can be used to access the menu, by pressing ALT and the appropriate highlighted menu
letter, or by pressing F10 and navigating through the menu with the arrow keys.
more information on the menu can be found in section 6.4, page 38

e Many commands in the IDE are bound to shortcuts, i.e. typing a special combination of keys
will execute a command immediately.

Remark:
e Whenworking inaLiNux X-Term or through atelnet session, the key combination with ALT

may not be available. To remedy this, the CTRL-Z combination can be typed rst. This means
that e.g. ALT-X can bereplaced by CTRL-Z X.

A complete reference of all keyboard shortcuts can be found in section 6.14, page 81.

6.2.2 Using the mouse

If the system is equipped with a mouse, it can be used to work with the IDE. The left button is used
to select menu items, press buttons, select text blocks etc.

The right mouse button is used to access the local menu, if available. Holding down the CTRL or
ALT key and clicking the right button will execute user de ned functions, see section 6.12.4, page
7.

Remark:

1. Occasionally, the manual usestheterm "drag the mouse". This means that the mouse is moved
while the left mouse button is being pressed.

2. The action of mouse buttons may be reversed, i.e. the actions of the left mouse button can be
gned to the right mouse button and vice versa . Throughout the manual, it is assumed that
the actions of the mouse buttons are not reversed.

3. The mouseis not aways available, even if amouseisinstalled:

e ThelDE isrunning under LINUX through atelnet connection from a WINDOWS machine.
e TheIDE isrunning under LINUX in an X-term under X-windows.

2See section 6.12.4, page 77 for more information on how to reverse the actions of the mouse buttons.

35

CHAPTER 6. THE IDE

6.2.3 Navigating in dialogs

Diaogs usualy have alot of elements in them such as buttons, edit elds, memo elds, list boxes
and so on. To activate one of these elds, it is suf cient to:

1. Click on the element with the mouse.
2. Pressthe TAB key till the focus reaches the mouse

3. Pressthe highlighted letter in the element’s label. If the focusis currently on an element that
allows to edit, then ALT should be pressed simultaneously with the highlighted letter. For a
button, the action associated with the button will then be executed.

Inside edit elds, list boxes, memos, navigation is carried out with the usual arrow key commands.

6.3 Windows

Nowadays, working with windowed applications should be no problem for most WinDows and
LINUX users. Nevertheless, the following section describes how the windows work in the Free Pascal
IDE, to alow ef cient work with it.

6.3.1 Window basics
A common IDE window is displayed in gure(6.2).

Figure 6.2: A common | DE window
noname0l.pas

The window is surrounded by a so-called frame, the white double line around the window.
At the top of the window 4 things are displayed:

e Attheupper left corner of thewindow, acloseiconisshown. When clicked, the window will be
closed. It can be also closed by pressing ALT-F3 or selecting the menuitem " Window|Close" .
All open windows can be closed by selecting the menu item " Window|Close all" .

¢ Inthe middle, thetitle of the window is displayed.

e Almost at the upper right corner, anumber isvisible. This number identi esthe editor window,
and pressing ALT-NUMBER will jump to this window. Only the rst 9 windows will get such
anumber.

36

CHAPTER 6. THE IDE

e Attheupper right corner, asmall green arrow isvisible. Clicking thisarrow zooms the window
so it covers the whole desktop. Clicking this arrow on a zoomed window will restore old size
of thewindow. Pressing the key F5 has the same effect as clicking that arrow. The same effect
can be achieved with the menu item " Window|Zoom" . Windows and dialogs which aren’t
resizeable can't be zoomed, either.

The right edge and bottom edges of a window contain scrollbars. They can be used to scroll the
window contents with the mouse. The arrows at the ends of the scrollbars can be clicked to scroll the
contentsline by line. Clicking on the dotted area between the arrows and the cyan-coloured rectangle
will scroll the window’s content page by page. By dragging the rectangle the content can be scrolled
continuously.

The star and the numbers in the lower Ieft corner of the window display information about the con-
tents of the window. They are explained in the section about the editor, see section 6.5, page 44.

6.3.2 Sizing and moving windows

A window can be moved and sized using the mouse and the keyboard: To move a window:

e using the mouse, click on thetitle bar and drag the window with the mouse.

e using the keyboard, go into the size/move mode by pressing CTRL-F5 or selecting the menu
item" Window|Size/Move" . . Using the cursor keysthewindow can be moved. Thesize/move
mode can be left by pressing ENTER. In this case, the window will keep its size and position.
Alternatively, pressing Esc will restore the old position.

To resize awindow:

e using the mouse, click on the lower right corner of the window and drag it.

e using the keyboard, go into the size/fmove mode by pressing CTRL-F5 or selecting the menu
item " Window|Size/Move" . The window frame will be green to indicate that the IDE isin
sizelmove mode. By pressing shift and the cursor keys simultaneously, the window can be
resized. The size/move mode can be left by pressing ENTER. In this case, the window will
keep the new size. Pressing Esc will restore the old size.

Not all windows can be resized. This applies, for example, to dialog windows (section 6.3.4, page
38).

A window can aso be hidden. To hide a window, the CTRL-F6 key combination can be used, or
the " Window|Hide" menu may be selected. To restore a Hidden window, it is necessary to select it
from the window list. More information about the window list can be found in the next section.

6.3.3 Working with multiple windows

When working with larger projects, it is likely that multiple windows will appear on the desktop.
However, only one of these windows will be the active window, all other windows will be inactive.

An inactive window isidenti ed by agrey frame. An inactive window can be made active in one of
severa ways:

e using the mouse, activate awindow by clicking on it.

e using the keyboard, pressing F6 will step trough all open windows. To activate the previously
activated window, SHIFT-F6 can be used.

37

CHAPTER 6. THE IDE

e themenuitem" Window|Next" can be used to activate the next window in thelist of windows,
while W ndow| Pr evi ous will select the previous window.

e If the window has a number in the upper right corner, it can be activated by pressing ALT-
<NUMBER>.

e Pressing ALT-Owill pop up adialog with all available windowswhich allows aquick activation
of windows which don’t have a number.

The windows can be ordered and placed on the IDE desktop by zooming and resizing them with
the mouse or keyboard. Thisis atime-consuming task, and particularly dif cult with the keyboard.
Instead, the menu items " Window|Tile" and " Window|Cascade" can be used:

Tile will divide whole desktop space evenly between all resizable windows.

Cascade puts all windows in a cascaded position.

In very rare cases the screen of the IDE may be mixed up. In this case the whole IDE screen can be
refreshed by selecting the menu item " Window|Refresh display" .

6.3.4 Dialog windows

In many cases the IDE displays a dialog window to get user input. The main difference to normal
windows is that other windows cannot be activated while a dialog is active. Also the menu is not
accessible whilein adialog. This behaviour is called modal. To activate another window, the modal
window or dialog must be closed rst.

A typical dialog window isshownin gure (6.3).

Agure6.3: A typical didogwindow

S ntax Code eneration I erhoze I FOUSER | szembler

Suntax Switches

Conditio al defines

6.4 TheMenu

The main menu (the gray bar at the top of the IDE) provides access to al the functionality of the
IDE. It also displays aclock, displaying the current time. The menu is always available, except when
adialogisopened. If adialog isopened, it must be closed rst in order to access the menu.

In certain windows, a local menu is also available. The local menu will appear where the cursor is,
and provides additional commands that are context-sensitive.

38

CHAPTER 6. THE IDE

6.4.1 Accessing the menu

The menu can be accessed in a number of ways:

1. By using the mouseto select items. The mouse cursor should be located over the desired menu
item, and a left mouse click will then select it.

2. By pressing F10. Thiswill switch the IDE focus to the menu. Use the arrow keys can then be
used to navigate in the menu, the ENTER key should be used to select items.

3. To access menu items directly, ALT-<HIGHLIGHTED MENU LETTER> can be used to select a
menu item. Afterwards submenu entries can be selected by pressing the highlighted letter, but
without ALT. E.g. ALT-S G isafast way to display the goto line dialog.

Every menu item is explained by a short text in the status bar.
When alocal menu is available, it can be accessed by pressing the right mouse button or ALT-F10.
In the subsequent, all menu entries and their actions are described.

6.4.2 The File menu
The" File" menu contains all menu items that allow to load and save les, aswell asto exit the IDE.

New Opens anew, empty editor window.

New from template Promptsfor atemplateto be used, asksto Il in any parameters, and then starts
anew editor window with the template.

Open (F3) Presents a le selection dialog, and opensthe selected le in anew editor window.

Save (F2) Saves the contents of the current edit window with the current lename. If the current
edit window does not yet have a lename, adialog is presented to enter a lename.

Save as Presents a dialog in which a lename can be entered. The current window’s contents are
then saved to thisnew lename, and the lenameis stored for further save actions.

Changedir Presentsadialoginwhich adirectory can be selected. The current working directory is
then changed to the selected directory.

Command shell Executes a command shell. After the shell exited, the IDE resumes. Which com-
mand shell is executed depends on the system.

Exit (ALT-X) Exits the IDE. If any unsaved les are in the editor, the IDE will ask if these les
should be saved.

Under the " Exit" menu appear some lenames of recently used les. These entries can be used to
quickly reload these lesin the editor.

6.4.3 The Edit menu
The " Edit" menu contains entries for accessing the clipboard, and undoing or redoing editing ac-
tions. Most of these functions have shortcut keys associated with them.

Undo (ALT-BKSP) Undo thelast editing action. The editing actions are stored in abuffer, selecting
this mechanism will move backwardsthrough this buffer, i.e. multiple undo levels are possible.
The selection is not preserved, though.

39

CHAPTER 6. THE IDE

Redo Redo the last action that was previously undone. Redo can redo multiple undone actions.

Cut (SHIFT-DEL) Copy the current selection to the clipboard and delete the selection from the
text. Any previous clipboard contents is lost after this action. After this action, the clipboard
contents can be pasted elsewhere in the text.

Copy (CTRL-INS) Copy the current selection to the clipboard. Any previous clipboard contentsis
lost after this action. After this action, the clipboard contents can be pasted elsewhere in the
text.

Paste (SHIFT-INS) Insert the current clipboard contents in the text at the cursor position. The
clipboard contents remains as it was.

Clear (CTRL-DEL) Clears(i.e. deletes) the current selection.

Show clipboard Opens awindow in which the current clipboard contents is shown.

When running an IDE under WiNDOWS, the " Edit" menu has two additional entries. The IDE
maintains a separate clipboard which does not share its contents with the windows clipboard. To
access the Windows clipboard, the following two entries are also present:

Copy to Windows thiswill copy the selection to the Windows clipboard.

Paste from Windows thiswill insert the content of the windows clipboard (if it containstext) in the
edit window at the current cursor position.

6.4.4 The Search menu

The" Search" menu provides accessto the search and replace dial ogs, aswell as accessto the symbol
browser of the IDE.

Find (CTRL-Q F) Presents the search dialog. A search text can be entered, and when the dialog is
closed, the entered text is searched in the active window. If the text isfound, it will be selected.

Replace (CTRL-Q A) Presents the search and replace dialog. After the dialog is closed, the search
text will be replaced by the replace text in the active window.

Search again (CTRL-L) Repeats the last search or search and replace action, using the same pa-
rameters.

Gotolinenumber (ALT-G) Promptsfor aline number, and then jumps to this line number.

When the program and units are compiled with browse information, then the following menu entries
are also enabled:

Find procedure Not yet implemented.

Objects Asksfor the name of an object and opens a browse window for this object.
Modules Asks for the name of amodule and opens a browse window for this object.
Globals Asksfor the name of aglobal symbol and opens a browse window for this object.

Symbol Opens awindow with all known symbols, so asymbol can be selected. After the symbal is
selected, a browse window for that symbol is opened.

40

CHAPTER 6. THE IDE

6.4.5 The Run menu
The" Run" menu contains all entries related to running a program,

Run (CTRL-F9) If the sources were modi ed, compiles the program. If the compile is successful,
the program is executed. If the primary le was set, then that is used to determine which
program to execute. See section 6.4.6, page 41 for more information on how to set the primary

le.

Step over (F8) Run the program till the next source line is reached. If any calls to procedures are
made, these will be executed completely as well.

Traceinto (F7) Executethe current line. If the current line contains acall to another procedure, the
process will stop at the entry point of the called procedure.

Goto cursor (F4) Runsthe program till the execution point matches the line where the cursor is.
Until return Runsthe current proceduretill it exits.

Parameters This menu item allows to enter parameters that will be passed on to the program when
it is being executed.

Program reset (CTRL-F2) if the program is being run or debugged, the debug session is aborted,
and the running program is killed.

6.4.6 The Compile menu

The " Compile" menu contains all entries related to compiling a program or unit.

Compile (ALT-F9) Compiles the contents of the active window, irrespective of the primary le
setting.

Make (F9) Compiles the contents of the active window, and any les that the unit or program de-
pends on and that were modi ed since the last compile. If the primary le was set, the primary
leis compiled instead.

Build Compiles the contents of the active window, and any les that the unit or program depends
on, whether they were modi ed or not. If the primary le was set, the primary leiscompiled
instead.

Target Setsthe target operating system for which should be compiled.

Primary le Setsthe primary le. If set, any run or compile command will act on the primary le
instead of on the active window. The primary le need not be loaded in the IDE for this to
have effect.

Clear primary le Clearsthe primary le. After thiscommand, any run or compile action will act
on the active window.

Information Displays some information about the current program.

Compiler messages (F12) Displays the compiler messages window. This window will display the
messages generated by the compiler during the last compile.

a1

CHAPTER 6. THE IDE

6.4.7 The Debug menu

The" Debug" menu contains menu entriesto aid in debugging aprogram, such as setting breakpoints
and watches.

Output
User screen (ALT-F5) Switchesto the screen asit was last |eft by the running program.

Breakpoint (CTRL-F8) Sets a breakpoint at the current line. When debugging, program execution
will stop at this breakpoint.

Call stack (CTRL-F3) Shows the call stack. The call stack isthe list of addresses (and Ienames
and line numbers, if this information was compiled in) of procedures that are currently being
called by the running program.

Registers Shows the current content of the CPU registers.

Add watch (CTRL-F7) Add awatch. A watch is an expression that can be evaluated by the IDE
and will be shown in a special window. Usually thisisthe content of some variable.

Watches Shows the current list of watches in a separate window.
Breakpoint list Shows the current list of breakpointsin a separate window.

GDB window Shows the GDB debugger console. This can be used to interact with the debugger
directly; here arbitrary GDB commands can be typed and the result will be shown in the
window.

6.4.8 The Tools menu

The " Tools" menu de nes some standard tools. If new tools are de ned by the user, they are ap-
pended to this menu as well.

Messages (F11) Show the messages window. This window contains the output from one of the
tools. For more information, see section 6.10.1, page 57.

Goto next (ALT-F8) Goto next message.
Goto previous (ALT-F7) Goto previous message

Grep (SHIFT-F2) Prompts for aregular expression and options to be given to grep, and then exe-
cutes grep with the given expression and options. For thisto work, the grep program must be
installed on the system, and be in a directory that is in the PATH. For more information, see
section 6.10.2, page 57.

Calculator Displaysthe calculator. For more information, see section 6.10.4, page 58

Ascii table Displaysthe ASCI | table. For more information, see section 6.10.3, page 58

6.4.9 The Options menu

The " Options" menu is the entry point for all dialogs that are used to set options for compiler and
IDE, aswell asthe user preferences.

Moaode Presents adialog to set the current mode of the compiler. The current mode is shown at the
right of the menu entry. For more information, see section 6.11.8, page 73.

42

CHAPTER 6. THE IDE

Compiler Presentsadialog that can be used to set common compiler options. These options will be
used when compiling a program or unit.

Memory sizes Presents a dialog where the stack size and the heap size for the program can be set.
These options will be used when compiling a program.

Linker Presents adialog where some linker options can be set. These options will be used when a
program or library is compiled.

Debugger Presents a dialog where the debugging options can be stored. These options are used
when compiling units or programs. Note that the debugger will not work unless debugging
information is generated in the program.

Directories Presentsadiaogwherethe various directories needed by the compiler can be set. These
directories will be used when a program or unit is compiled.

Browser Presents a dialog where the browser options can be set. The browser options affect the
behaviour of the symbol browser of the IDE.

Tools Presents a dialog to con gure the tools menu. For more information, see section 6.10.5, page
59.

Environment Presentsadialog to con gure the behaviour of the IDE. A sub menu is presented with
the various aspects of the IDE:

Preferences General preferences, such as whether to save les or not, and which les should
be saved. The video mode can also be set here.
Editor Controls various aspects of the edit windows.

CodeComplete Used to set the words which can be automatically completed when typing in
the editor windows.

Codetemplates Used to de ne code templates, which can be inserted in an edit window.

Desktop Used to control the behaviour of the desktop, i.e. several features can be switched
on or off.

Mouse Can be used to control the actions of the mouse, and to assign commands to various
mouse actions.

Startup Not yet implemented.
Colors Here the various colors used in the IDE and the editor windows can be set.

Open Presents a dialog in which a le with editor preferences can be selected. after the dialog is
closed, the preferences le will be read and the preferences will be applied.

Save Save the current optionsin the default le.

Save as Saves the current options in an aternate le. A le selection dialog box will be presented
in which the alternate settings le can be entered.

Please note that options are not saved automatically, they should be saved explicitly with the" Optiong]-

Save" command.

6.4.10 The Window menu

The "Window" menu provides access to some window functions. More information on all these
functions can be found in section 6.3, page 36

Tile Tilesall opened windows on the desktop.

CHAPTER 6. THE IDE

Cascade Cascades all opened windows on the desktop.
Closeall Closeal opened windows.

Sizelmove (CTRL-F5) Put the IDE in Size/move modus; after this command the active window can
be moved and resized using the arrow keys.

Zoom (F5) Zooms or unzooms the current window.

Next (F6) Activates the next window in the window list.

Previous (SHIFT-F6) Activates the previous window in the window list.
Hide (CTRL-F6) Hides the active window.

Close (ALT-F3) Closes the active window.

List (ALT-0) Shows the list of opened windows. From there a window can be activated, closed,
shown and hidden.

Refresh display Redraws the screen.

6.4.11 The Help menu

The" Help" menu provides entry pointsto all the help functionality of the IDE, as well as the entry
to customize the help system.

Contents Shows the help table of contents

Index (SHIFT-F1) Jumpsto the help Index.

Topic search (CTRL-F1) Jumpsto the topic associated with the currently highlighted text.
Previoustopic (ALT-F1) Jumps to the previously visited topic.

Using help Displays help on using the help system.

Files Allows to con gure the help menu. With this menu item, help les can be added to the help
system.

About Displays information about the IDE. See section 6.13.3, page 81 for more information.

6.5 Editing text

In this section, the basics of editing (source) text are explained. The IDE works like many other text
editorsin this respect, so mainly the distinguishing points of the IDE will be explained.

6.5.1 Insert modes

Standard, the IDE isin insert mode. This meansthat any text that istyped will beinserted before text
that is present after the cursor.

In overwrite mode, any text that is typed will replace existing text.

When in insert mode, the cursor is a at blinking line. If the IDE is in overwrite, the cursor is a
cube with the height of one line. Switching between insert mode or overwrite mode happens with
the INSERT key or with the CTRL-V key.

Remark:

CHAPTER 6. THE IDE

6.5.2 Blocks

The IDE handles selected text just as the Turbo Pascal IDE handlesit. Thisis dightly different from
the way e.g. Windows applications handle selected text.

Text can be selected in 3 ways:
1. Using the mouse, dragging the mouse over existing text selectsit.

2. Using the keyboard, press CTRL-K B to mark the beginning of the selected text, and CTRL-K
K to mark the end of the selected text.

3. Using the keyboard, hold the SHIFT key depressed while navigating with the cursor keys.
There are also some special select commands:

1. The current line can be selected using CTRL-K L.

2. The current word can be selected using CTRL-K T.

In the Free Pascal IDE, selected text is persistent. After selecting arange of text, the cursor can be
moved, and the selection will not be destroyed; hence the term "block’ is more appropriate for the
selection, and will be used henceforth...

Several commands can be executed on a block:

e Move the block to the cursor location (CTRL-K V).

Copy the block to the cursor location (CTRL-K C).

Delete the block (CTRL-K Y).

Writetheblock toa le (C TRL-K W).

Read the contents of a leinto ablock (C TRL-K R). If there is already a block, this block is
not replaced by this command. The leisinserted at the current cursor position, and then the
inserted text is selected.

Indent a block (CTRL-K I).

Undent ablock (CTRL-K U).

Print the block contents (CTRL-K P).

When searching and replacing, the search can be restricted to the block contents.

6.5.3 Setting bookmarks

The IDE provides a feature which allows to set a bookmark at the current cursor position. Later, the
cursor can be returned to this position by pressing a keyboard shortcut.

Up to 9 bookmarks per source le can be set up, they are set by C TRL-K <NUMBER> (where number
is the number of the mark). To go to a previously set bookmark, press CTRL-Q <NUMBER>.

Currently, the bookmarks are not stored if the IDE isleft. Thismay changein futureimplementations
of the IDE.

45

CHAPTER 6. THE IDE

6.5.4 Jumping to a source line

It is possible to go directly to a speci ¢ source line. To do this, open the goto line dialog via the
" Search|Goto lin€" menu.

In the dialog that appears, the line-number the IDE should jump to can be entered. The goto line
dialogisshownin gure (6.4).

Figure 6.4: The goto line dialog.

6.5.5 Syntax highlighting

The IDE is capable of syntax highlighting, i.e. the color of certain Pascal elements can be set. As
text is entered in an editor window, the IDE will try to recognise the elements, and set the color of
the text accordingly.

The syntax highlighting can be customized in the colors preferences dialog, using the menu option
" Options|Environment|Colors'. In the colors dialog, the group "Syntax" must be selected. The
item list will then display the various syntactical elements that can be colored:

Whitespace The empty text between words. Remark that for whitespace, only the background color
will be used.

Comments All styles of commentsin Free Pascal.

Reserved words All reserved words of Free Pascal. (see aso Reference guide).
Strings Constant string expressions.

Numbers Numbersin decimal notation.

Hex numbers Numbersin hexadecimal notation.

Assembler Any assembler blocks.

Symbols Recognised symbols (variables, types)

Directives Compiler directives.

Tabs Tab characters in the source can be given a different color than other whitespace.
The editor uses some default settings, but experimentation is the best way to nd a tting color

scheme. A good color scheme helps detecting errors in sources, since errors will result in wrong
syntax highlighting.

46

file:../ref/ref.html

CHAPTER 6. THE IDE

6.5.6 Code Completion

Code completion means the editor will try to guess the text as it is being typed. It does this by
checking what text is typed, and as soon as the typed text can be used to identify akeyword in alist
of keywords, the keyword will be presented in asmall colored box under the typed text. Pressing the
ENTER key will complete the word in the text.

There is no code completion yet for 1ling in function arguments, choosing object methods asin e.g.
Delphi.

Code completion can be customized in the Code completion dialog, reachable through the menu
option " Options|Preferences|Codecompletion” . Thelist of keywords that can be completed can be
maintained here. The code completion dialog is shown in gure (6.5).

Figure 6.5: The codecompletiondidog.

The dialog shows the currently de ned keywords that will be completed in aphabetical order. The
following buttons are available:

Ok Savesall changes and closes the dialog.

Edit Popsup adialog that allows to edit the currently highlighted keyword.

New Pops up adialog that allowsto enter a new keyword which will be added to the list.
Delete Deletesthe currently highlighted keyword from the list

Cancel Discardsall changes and closes the dialog.

All keywords are saved and are available the next time the IDE is started. Duplicate names are not
allowed. If an attempt is made to add a duplicate nameto the list, an error will follow.

6.5.7 Code Templates

Code templates are away to insert large pieces of code at once. Each code templatesisidenti ed by
a unique name. This name can be used to insert the associated piece of code in the text.

For example, thenamei f t hen could be associated to the following piece of code:

47

CHAPTER 6. THE IDE

If | Then
begin
end

A code template can be inserted by typing its name, and pressing CTRL-J when the cursor is posi-
tioned right after the template name.

If there is no template name before the cursor, adialog will pop up to allow selection of atemplate.

If avertical bar (]) is present in the code template, the cursor is positioned on it, and the vertical bar
is deleted. In the above example, the cursor would be positioned between thei f and t hen, ready
to type an expression.

Code templates can be added and edited in the code templates dial og, reachable via the menu option
" Optiong|Preferences|Codetemplates’ . The code templates dialog is shown in gure (6.6).

Figure 6.6: The code templates dial og.

ifthen

Thetop listbox in the code templ ates dial og shows the names of al known templates. The bottom half
of the dialog shows the text associated with the currently highlighted code template. The following
buttons are available;

Ok Savesall changes and closes the dialog.

Edit Popsup adialog that allowsto edit the currently highlighted code template. Both the name and
text can be edited.

New Pops up adialog that allows to enter a new code template which will be added to the list. A
name must be entered for the new template.

Delete Deletesthe currently highlighted code template from the list
Cancel Discardsall changes and closes the dialog.

CHAPTER 6. THE IDE

All templates are saved and are available the next time the IDE is started.

Remark: Duplicates are not allowed. If an attempt is made to add a duplicate name to the list, an error will
occur.

6.6 Searchingand replacing

The IDE alowsto search for text in the active editor window. To search for text, one of the following
can be done:

1. Select " Search|Find" in the menu.
2. PressCTRL-Q F.

After that, the dialog shownin gure (6.7) will pop up, and the following options can be entered

Figure 6.7: The search dialog.

Direction

Uitiunﬁ

Scope

Text to nd Thetext to be searched for. If a block was active when the dialog was started, the rst
line of this block is proposed.

Case sensitive When checked, the search is case sensitive.
Wholewordsonly When checked, the search text must appear in the text as a complete word.
Direction The direction in which the search must be conducted, starting from the speci ed origin.
Scope Speci esif the search should be on the whole le, or just the selected text.
Origin Speci esif the search should start from the cursor position or the start of the scope.
After the dialog has closed, the search is performed using the given options.
A search can be repeated (using the same options) in one of 2 ways:
1. Select " Search|Find again” from the menu.
2. PressCTRL-L.

It is also possible to replace occurrences of a text with another text. This can be done in a similar
manner to searching for atext:

CHAPTER 6. THE IDE

1. Select " Search|Replace” from the menu.
2. PressCTRL-QA.

A dialog, similar to the search dialog will pop up, as shown in gure (6.8).

Figure 6.8: The replace dialog.

I [11
ew text [

Options

Scope I‘Jr-ii:i.n

Direction

In thisdialog, in addition to the things that can be Iled in in the search dialog, the following things
can be entered:

New text Text by which found text will be replaced.

Prompt on replace Before areplacement is made, the IDE will ask for con rmation.

If the dialog is closed with the "OK’ button, only the next occurrence of the the search text will be
replaced. If the dialog is closed with the ' Change All’ button, all occurrences of the search text will
be replaced.

6.7 Thesymbol browser

The symbol browser allowsto nd al occurrences of a symbol. A symbol can be a variable, type,
procedure or constant that occurs in the program or unit sources.

To enable the symbol browser, the program or unit must be compiled with browser information. This
can be done by setting the browser information options in the compiler options dialog.

The IDE alowsto browse severa types of symbols:

procedures Allowsto quickly jump to a procedure de nition or implementation.
Objects Allowsto quickly browse an object.

Modules Allowsto browse a module.

Globals Allowsto browse any global symbol.

Arbitrary symbol Allowsto browse an arbitrary symbol.

50

CHAPTER 6. THE IDE

Inall cases, rst asymbol to be browsed must be selected. After that, a browse window appears. In
the browse window, all locations where the symbol was encountered are shown. Selecting alocation
and pressing the space bar will cause the editor to jJump to that location; the line containing the
symbol will be highlighted.

If the location isin a source le that is not yet displayed, a new window will be opened with the
source leloaded.

After the desired | ocation was reached, the browser window can be closed with the usual commands.

The behaviour of the browser can be customized with the browser options dialog, using the " Op-
tiong|Browser" menu. The browser options dialog looks like gure (6.9).

Figure 6.9: The browser options dialog.

[_1 Labels U

C P

T I
Sub—hrous ini Preferred iane

Disilai
' — Cancely

The following options can be set in the browser options dialog:

Symbols Here the types of symbols displayed in the browser can be selected:

Labels labels are shown.
Constants Constants are shown.
Types Types are shown.
Variables Variables are shown.
Procedures Procedures are shown.
Inherited
Sub-browsing Speci es what the browser should do when displaying the members of a complex
symbol such asarecord or class:
New browser The members are shown in anew browser window.
Replace current The contents of the current window are replaced with the members of the
selected complex symbol.
Preferred pane Speci eswhat paneis shown in the browser when it isinitialy opened:

scope
Reference

CHAPTER 6. THE IDE

Display Determines how the browser should display the symbols:

Quali ed symbols
Sort always sorts the symbolsin the browser window.

6.8 Running programs

A compiled program can be run straight from the IDE. This can be done in one of several ways:

1. sdlect the" Run|Run" menu, or
2. press CTRL-F9.

If command-line parameters should be passed to the program, then these can be set through the
" Run|Parameters' menu. The program parameters dialog looks like gure (6.10).

Figure 6.10: The program parameters dial og.

Once the program started, it will continue to run, until

1. the program quits normally,
2. an error happens,
3. abreakpoint is encountered or

4. the program is reset by the user.

The last alternative is only possible if the program is compiled with debug information.
Alternatively, it is possible to position the cursor somewhere in asource le, and run the program till
the execution reaches the source-line where the cursor is located. This can be done by

1. selecting " Run|Goto Cursor” in the menu,

2. pressing F4.

Again, thisisonly possibleif the program was compiled with debug information.

The program can also executed line by line. Pressing F8 will execute the next line of the program.
If the program wasn't started yet, it is started. Repeatedly pressing F8 will execute line by line of
the program, and the IDE will show the line to be executed in an editor window. If somewhere in
the code a call occurs to a subroutine, then pressing F8 will cause the whole routine to be executed
before control returns to the IDE. If the code of the subroutine should be stepped through as well,
then F7 should be used instead. Using F7 will causethe I DE to execute line by line of any subroutine
that is encountered.

If asubroutineisbeing stepped through, then the " Run|Until return” menu will execute the program
till the current subroutine ends.

If the program should be stopped before it quits by itself, then this can be done by

52

CHAPTER 6. THE IDE

1. selecting " Run|Program reset" from the menu, or

2. pressing CTRL-F2.

The running program will then be aborted.

6.9 Debugging programs

To debug a program, it must be compiled with debug information. Compiling a program with debug
information allows to:

1. Execute the program line by line.
2. Runthe program till a certain point (a breakpoint)

3. Inspect the contents of variables or memory locations while the program is running.

6.9.1 Using breakpoints

Breakpoints will cause a running program to stop when the execution reaches the line where the
breakpoint was set. At that moment, control is returned to the IDE, and it is possible to continue
execution.

To set a breakpoint on the current source line, use the " Debug|Breakpoint" menu entry, or press
CTRL-F8.

A list of current breakpoints can be obtained through the " Debug|Breakpoint list" menu. The
breakpoint list window is shownin gure(6.11).

Figure 6.11: The breakpoint list window

Type | State | Position | Ignore | Conditions

file—line idisabled ihello.

om0 wEm, 0 mEEn, 00 nEEe

In the breakpoint list window, the following things can be done:

New Showsthe breakpoint property dialog where the properties for anew breakpoint can be entered.

Edit Shows the breakpoint property dialog where the properties of the highlighted breakpoint can
be changed.

Delete Deletesthe highlighted breakpoint.

The dialog can be closed with the’ Close’ button. The breakpoint propertiesdialog is shownin gure
(6.12)

The following properties can be set:

53

CHAPTER 6. THE IDE

Figure 6.12: The breakpoint properties dialog

secostempshello . pas
ine

Conditions

Enure count

type function function breakpoint. The program will stop when the function with the given name
isreached.

le-line Source line breakpoint. The program will stop when the source le with given name
and line is reached;

watch Expression breakpoint. An expression may be entered, and the program will stop as
soon as the expression changes.

awatch (accesswatch) Expression breakpoint. An expression that references a memory loca-
tion may be entered, and the program will stop as soon as the memory indicated by the
expression is accessed.

rwatch (read watch) Expression breakpoint. An expression that references a memory loca
tion may be entered, and the program will stop as soon as the memory indicated by the
expression isread.

name Name of the function or le whereto stop.
line Line number inthe le whereto stop. Only for breakpoints of type le-line.

Conditions Here an expression can be entered which must evaluate Tr ue for the program to stop
at the breakpoint. The expressions that can be entered must be valid GDB expressions.

Ignore count The number of times the breakpoint will be ignored before the program stops;
Remark:

1. Because the IDE uses GDB to do its debugging, it is necessary to enter al expressions in
uppercase on FREEBSD.

2. Expressions that reference memory locations should be no longer than 16 bytes on LINUX or
go32v2 on an Intel processor, since the Intel processor’s debug registers are used to monitor
these locations.

3. Memory location watches will not function on Win32 unless a special patch is applied.

Remark:

CHAPTER 6. THE IDE

6.9.2 Using watches

When debugging information is compiled in the program, watches can be used. Watches are expres-
sions which can be evaluated by the IDE and shown in a separate window. When program execution
stops (e.g. at abreakpoint) all watches will be evaluated and their current values will be shown.

Setting a new watch can be done with the " Debug|Add watch" menu command or by pressing
CTRL-F7. When this is done, the watch property dialog appears, and a new expression can be
entered. The watch property dialog isshown in gure (6.13).

Figure 6.13: The watch property dialog

I

Current value:

Previous value:

In the dialog, the expression can be entered, any possible previous value and current value are shown.

Becausethe IDE uses GDB to do it’s debugging, it is necessary to enter all expressionsin uppercase
in FREEBSD.

A list of watches and their present value is available in the watches window, which can be opened
with the " Debug|Watches' menu. The watch list window is shown in gure (6.11).

Figure 6.14: The watch list window.

[0]——————— UWatches
a <Unknown value>

Pressing ENTER or the space bar will show the watch property dialog for the currently highlighted
watch in the watches window.

Thelist of watches is updated whenever the | DE resumes control when debugging a program.

6.9.3 The call stack

The call stack helpsin showing the program ow. It showsthelist of proceduresthat are being called
at this moment, in reverse order. The call stack window can be shown using the " Debug|Call Stack"

55

CHAPTER 6. THE IDE

It will show the address or procedure name of all currently active procedures with their lename and
addresses. If parameters were passed they will be shown as well. The call stack is shown in gure
(6.15).

Figure 6.15; The call stack window.

[I]— Call Stack ——[1T]

hello.pas{11) DOHELLO ()

hello.pas(15) main ()

By pressing the space bar in the call stack window, the line corresponding to the call will be high-
lighted in the edit window.

6.9.4 The GDB window

The GDB window provides direct interaction with the GDB debugger. In it, GDB commands can be
typed as they would be typed in GDB. The response of GDB will be shown in the window.

Some more information on using GDB can be found in section 10.2, page 106, but the nal reference
is of course the GDB manual itself 3. The GDB window is shown in gure (6.16).

Figure 6.16: The GDB window
info sztack —— Backtrace of the stack
info zsymhol — Describe what symhol is at loc
info target — Mamesz of targets and files hei
info terminal — Print inferior’s saved termi
info threads — IDs of currently known thread
info tracepoints —— Status of tracepoints
info types — All type names
info variabhles — All globhal and static varia
info warranty — Uarious kinds of warranty vyo
info watchpoints — Svynonym for '‘info breakp

Type "help info' followed by info subcommand
Command name abbreviations are allowed if una

gdhb_

1:1 = H

3Available from the Free Software Foundation website.

56

CHAPTER 6. THE IDE

6.10 Using Tools

Thetools menu provides easy accessto external tools. It also hasthree pre-de ned toolsfor program-
mers: an ASCI| table, a grep tool and a calculator. The output of the external tools can be accessed
through this menu as well.

6.10.1 The messages window

The output of the external utilities is redirected by the IDE and it will be displayed in the messages
window. The messages window is displayed automatically, if an external tool was run. The messages
window can be also displayed manually by the selecting the menu item " Tools|M essages' or by
pressing the key F11. The messages window isshown in gure (6.17).

Figure 6.17: The messages window

If the output of the tool contains Ienames and line numbers, the messages window can be used to
navigate the source asin a browse window:

1. Pressing ENTER or double clicking the output line will jump to the speci ed source line and
close the messages window.

2. Pressing the space bar will jump to the speci ed source ling, but will leave the messages
window open, with the focus on it. Thisallowsto quickly select another message line with the
arrow keys and jump to another location in the sources.

The algorithm which extracts the le names and line numbers from the tool output is quite sophisti-
cated, but in some cases it may fail*.

6.10.2 Grep

One external tool in the Tools menu is already prede ned: a menu item to call the grep utility
(" Toolg|Grep" or SHIFT-F2). Grep searches for a given string in les and returns the lines which
contain the string. The search string can be even aregular expression. For this menu item to work,
the grep program must be installed, since it does not come with Free Pascal.

The messages window displayed in gure (6.17) in the previous section shows the output of atypical
grep session. The messages window can be used in combination with grep to nd specia occur-
rencesin the text.

Grep supports regular expressions. A regular expression is a string with special characters which
describe a whole class of expressions. The command line in DOS or LINUX have limited support
for regular expressions. entering |l s *. pas (ordir *. pas)to get alist of al Pascal lesin a
directory. *.pas is something similar to aregular expression. It uses awildcard to describe awhole
class of strings: those which end on ".pas". Regular expressions offer much more: for example
[A-Z] [0- 9] + describes all strings which begin with a upper case letter followed by one or more
digits.

4Suggestions for improvement, or better yet, patches that improve the algorithm, are always welcome.

57

CHAPTER 6. THE IDE

It isoutside the scope of this manual to describe regular expressionsin great detail. Usersof aLINUX
system can get more information on grep using man gr ep on the command-line.

6.10.3 The ASCII table

The tools menu provides also an ASCII table (" Toolg|Ascii table"), The ASCII table can be used to
look up ASCII codes aswell asinserting charactersinto the window which was active when invoking
the table. To get the ASCII code of achar move the cursor on this char or click with the mouse on it.
To insert a char into an editor window either:

1. using the mouse, doubleclick it,

2. using the keyboard, press ENTER while the cursor ison it.

Thisis especialy useful for pasting graphical charactersin a constant string.

The ASCII table remains active till another window is explicitly activated, thus multiple characters
can beinserted at once. The ASCII tableisshownin gure (6.18).

Figure 6.18: The ASCII table

Eweit=DoFE P41 NEo I Tl 2cvaiY
TURE RS (oxr —_ /B123456789 1 54=27
EHHEDEFGHIJHLHHUPQHETUUHHTE[H]“

‘ahcdefghlgklmnu grstuvwxyzd i Ta
gﬁéﬁﬁh ceEeiiinh EEEHﬁﬁﬁ"DU¢E¥ﬁf

ALOMAN22L m 404 o 1L"1ﬂ| 1jud
iy Y T i
aBMMEcprS Ao sEN=22L)+ R0 - - N2

Char: Decimal: H Hex: BH

6.10.4 The calculator

The calculator allows to do some quick calculations. It is a simple calculator, since it does not take
care of operator precedence, and bracketing of operationsis not (yet) supported.

The result of the calculations can be pasted into the text using the CTRL-ENTER keystroke. The
calculator dialog is shown in gure (6.19).

The calculator supports all basic mathematical operations such as addition, subtraction, division and
multiplication. They are summarised in table (6.1).

But also more sophisticated mathematical operations such as exponentiation and logarithms are sup-
ported. The available mathematical calculations are shown in table (6.2).

58

CHAPTER 6. THE IDE

Figure 6.19: The calculator dialog

Table 6.1: Advanced calculator commands

Operation Button Key

Add two numbers + +

Subtract two numbers

Multiply two numbers * *

Divide two numbers / /

Delete the last typed digit <- BACKSPACE
Delete the display C C

Change the sign +

Do per cent calculation % %

Get result of operation = ENTER

Like many calculators, the calculator in the IDE also supports storing a single value in memory, and
severa operations can be done on this memory value. The available operations are listed in table
(6.3

6.10.5 Adding new tools

The tools menu can be extended with any external program which is command-line oriented. The
output of such a program will be caught and displayed in the messages window.

Adding atool to the tools menu can be done using the " Options|Tools" menu. Thiswill display the
toolsdialog. Thetoolsdialog is shown in gure (6.20).

In the tools dialog, the following actions are available:

New Shows the tool properties dialog where the properties of a new tool can be entered.

Edit Showsthetool properties dialog where the properties of the highlighted tool can be edited.

59

CHAPTER 6. THE IDE

Table 6.2: Advanced calculator commands

Operation Button Key
Calculate power Xy

Calculate the inverse value 1/ x
Calculate the square root sqr

Calculate the natural logarithm | og

Square the display contents X 2

Table 6.3: Advanced calculator commands

Operation Button Key
Add the displayed number to the memory M+

Subtract the displayed number from the memory M

Move the memory contents to the display M >

Move the display contents to the memory k-
Exchange display and memory contents M- >

Delete Removes the currently highlighted tool.
Cancel Discards all changes and closes the dialog.

OK Savesall changes and closes the dialog.

The de nitions of the tools are written in the desktop con guration le, so unless auto-saving of the
desktop leis enabled, the desktop le should be saved explicitly after the dialog is closed.

6.10.6 Meta parameters

When specifying the command line for the called tool, meta parameters can be used. Meta parameters
are variables and and they are replaced by their contents before passing the command line to the tool.

$CAP Captures the output of the tool.
$CAP_MSG Captures the output of the tool and putsit in the messages window.
$CAP_EDIT Capturesthe output of the tool and putsit in a separate editor window.

$COL Replaced by the column of the cursor in the active editor window. If thereis no active window
or the active window isadialog, then it is replaced by O.

$CONFIG Replaced by the complete Iename of the current con guration le.

$DIR() Replaced by the full directory of the Iename argument, including trailing directory separa-
tor. e.g.

$DI R(’ d:\data\nyfile.pas’)

would returnd: \ dat a\ .

$DRIVE() Replaced by the drive |etter of the lename argument. e.g.

60

CHAPTER 6. THE IDE

Figure 6.20: Thetools con guration dialog

$DRI VE(' d: \data\ nyfile. pas’)
would return d:.

$EDNAME Replaced by the complete |e name of the lein the active edit window. If thereis no
active edit window, thisis an empty string.

$EXENAME Replaced by the executable name that would be created if the make command was
used. (i.e. from the’ Primary File' setting or the active edit window).

$EXT() Replaced by the extension of the Iename argument. The extension includes the dot. e.g.
$EXT(' d:\data\nyfile.pas’)
would return .pas.

$LINE Replaced by the line number of the cursor in the active edit window. If no edit window is
present or active, thisisO.

SNAME() Replaced by the name part (excluding extension and dot) of the lename argument. e.g.
SNAMVE(' d: \data\nyfile.pas’)
would return my le .
SNAMEEXT() Replaced by the name and extension part of the lename argument. e.g.
SNAMVEEXT(’ d: \ data\ nyfile. pas’)
would return my le.pas .

SNOSWAP Does nothing in the IDE, it is provided for compatibility with Turbo Pascal only.

$PROMPT() Prompt displays a dialog bow that allows editing of all arguments that come after it.
Arguments that appear before the $PROVPT keyword are not presented for editing.

If a(optional) lename argument is present, $PROVPT() will load a dialog description from
the lename argument, e.g.

61

Remark:

CHAPTER 6. THE IDE

$PROMPT(cvsco. t df)

would parsethe le cvsco.tdf, construct adialog with it and display it. After the dialog closed,
the information entered by the user is used to construct the tool command line.

See section 6.10.7, page 62 for more information on how to create a dialog description.
$SAVE Before executing the command, the active editor window is saved, eveniif it is not modi ed.
$SAVE_ALL Before executing the command, all unsaved editor les are saved without prompting.

$SAVE_CUR Before executing the command the contents of the active editor window are saved
without prompting if they are modi ed.

$SAVE_PROMPT Before executing the command, a dialog is displayed asking whether any un-
saved les should be saved before executing the command.

SWRITEMSG() Writesthe parsed tool output information to a le with name asin the argument.

6.10.7 Building a command line dialog box

When de ning a toal, it is possible to show a dialog to the user, asking for additional arguments,
using the $SPROMPT(f i | enane) command-macro. Free Pascal comes with some dialogs, such as
a’grep’ didog, a’cvs checkout’ dialog and a’cvs check in’ dialog. The lesfor these dialogsarein
the binary directory and have an extension .tdf.

In this section, the le format for the dialog description le is explained. The format of this le
resembles awindows .INI |e, where each section in the |e describes an element (or contral) in the
dialog. An OK and an Cancel button will be added to the bottom of the dialog, so these should not
be speci ed in the dialog de nition.

A special section isthe Mai n section. It describes how the result of the dialog will be passed on the
command-line, and the total size of the dialog.

Keywords that contain a string value, should have the string value enclosed in double quotes asin
Title="Dialog title"
The Mai n section should contain the following keywords:

Title Thetitle of the dialog. Thiswill appear in the frame title of the dialog. The string should be
enclosed in quotes.

Size The size of the dialog, thisisformatted as (Col s, Rows) , so
Si ze=(59, 9)

means the dialog is 59 characters wide, and 9 lines high. This size does not include the border
of the dialog.

CommandLine speci es how the command-line will be passed to the program, based on the en-
tries made in the dialog. The text typed here will be passed on after replacing some control
placeholders with their val ues.

A control placeholder is the name of some control in the dialog, enclosed in percent (%9 char-
acters. The name of the control will be replaced with the text, associated with the control.
Consider the following example:

CommandLi ne="-n % % %% % % %6 ¥%sear chstr % % i | emask%

62

CHAPTER 6. THE IDE

Here the values associated with the controls named |, i, v, wand searchstr and
fil emask will beinserted in the command-line string.

Default The name of the control that is the default control, i.e. the control that has the focus when
the dialog is opened.

The following is an example of avalid main section:

[Mai n]

Title="G\U G ep"

Si ze=(56, 9)

CommandLi ne="-n % % %% % % %% Y%searchstr% % i | emask%
Def aul t ="searchstr"

After the Mai n section, asection must be speci ed for each control that should appear on the dial og.
Each section has the name of the control it describes, asin the following example:

[CaseSensitive]
Type=CheckBox
Nane="~C~ase sensitive"
Oigin=(2,6)

Si ze=(25, 1)

Def aul t =On

On="-i"

Each control section must have at least the following keywords associated with it:

Type Thetype of control. Possible values are:

Label A plain text label which will be shown on the dialog. A control can be linked to this
label, so it will be focused when the user presses the highlighted letter in the label caption

(if any).
InputLine An edit eld where atext can be entered.
CheckBox A Checkbox which can bein aon or off state.

Origin Speci es where the control should be located in the dialog. The origin is speci ed as
(left, Top) and the top-left corned of the dialog has coordinate (1, 1) (not counting the
frame).

Size Speci esthe size of the control, which should be speci edas (Col s, Rows) .

Each control has some speci ¢ keywords associated with it; they will be described below.
A label (Type=Label) hasthe following extra keywords associated with it:

Text thetext displayed in the label. If one of the letters should be highlighted so it can be used as a
shortcut, then it should be enclosed in tilde characters (), e.g. in

Text ="~T~ext to find"

The T will be highlighted.

Link here the name of a control in the dialog may be speci ed. If speci ed, pressing the label’s
highlighted letter in combination with the ALT key will put the focus on the control speci ed
here.

63

CHAPTER 6. THE IDE

A label does not contribute to the text of the command-line, it is for informational and navigational
purposes only. The following is an example of alabel description section:

[abel 2]

Type=Label
Oigin=(2,3)

Si ze=(22,1)
Text="Fil e ~m-ask"
Li nk="fi | emask"

An edit control (Type=I nput Li ne) alowsto enter arbitrary text. The text of the edit control will
be pasted in the command-lineif it is referenced there. The following keyword can be speci ed in a
inputline control section:

Value here a standard value (text) for the edit control can be speci ed. This value will be lled in
when the dialog appears.

The following is an example of ainput line section:

[fil emask]

Type=l nput Li ne
Oigin=(2,4)

Si ze=(22,1)

Val ue="*.pas *.pp *.inc"

A combo-box control (Type=CheckBox) presents a checkbox which can be in one of two states,
on or of f. With each of these states, a value can be associated which will be passed on to the
command-line. The following keywords can appear in a checkbox type section:

Name the text that appears after the checkbox. If thereis a highlighted letter in it, this |etter can be
used to set or unset the checkbox using the ALT-letter combination.

Default speci es whether the checkbox is checked or not when the dialog appears (values on or
of f)

On the text associated with this checkbox if it isin the checked state.
Off thetext associated with this checkbox if it isin the unchecked state.

The following is aexample of avalid checkbox description:

[i]

Type=CheckBox
Name="~C~ase sensitive"
Oigin=(2,6)

Si ze=(25, 1)

Def aul t =On

On="-ij"

If the checkbox is checked, then the value - i will be added on the command-line of the tool. If itis
unchecked, no value will be added.

CHAPTER 6. THE IDE

6.11 Project management and compiler options

Project management in Pascal ismuch easier than with C. The compiler knows from the source which
units, sources etc. it needs. So the Free Pascal IDE does not need a full featured project manager
like some C development environments offer, nevertheless there are some settings in the IDE which

apply to projects.

6.11.1 The primary le

Without a primary le the IDE compiles/runs the source of the active window when a program is
started. If a primary le is speci ed, the IDE compiles/runs always this source, even if another
source window is active. With the menu item " CompilelPrimary le..." a ledialog can be opened
where the primary le can be selected. Only the menu item " CompilelCompile" compiles still the
active window, this is useful if a large project is being edited, and only the syntax of the current
source should be checked.

The menu item " Compiler|Clear primary |€" restores the default behaviour of the IDE, i.e. the
"compile’ and 'run’ commands apply to the active window.

6.11.2 The directory dialog

In the directory dialog, the directories can be speci ed where the compiler should look for units,
libraries, object les. It aso sayswhere the output les should be stored. Multiple directories (except
for the output directory) can be entered, separated by semicolons. The directories dialog is shown in
gure (6.21).

Figure 6.21: The directories con guration dialog

bhject directories
ibrary directories
nclude directories

nit directories

The following directories can be speci ed:

EXE & PPU directories Speci es where the compiled units and executables will go. (- FE, (see
page 5.1.3) on the command line.)

Object directories Speci es where the compiler looks for external object les. (- Fo, (see page
5.1.3) on the command line.)

Library directories Speci es where the compiler (more exactly, the linker) looks for external li-
braries. (- FI , (see page 5.1.3) on the command line.)

Includedirectories Speci eswhere the compiler will look for include les, included with the { $i
} directive. (- Fi , (seepage 5.1.3) or - | , (see page 5.1.3) on the command line.)

65

CHAPTER 6. THE IDE

Unit directories Speci es where the compiler will look for compiled units. The compiler aways
looks rstinthe current directory, and also in some standard directories. (- Fu, (see page5.1.3)
on the command line.)

6.11.3 The target operating system

The menu item " Compile|Target" alows to specify the target operating system for which the
sources will be compiled. Changing the target doesn’t affect any compiler switches or directories. It
does affect some de nes de ned by the compiler. The settings here correspond to the option - T, (see
page 5.1.4) on the command-line. The compilation target dialog isshownin gure (6.22).

Figure 6.22: The compilation target dialog

(=3 WIN3Z

The following targets can be set:

Dos (go32v1) Thisswitch will dissapear in time as this target is no longer being maintained.
Dos (go32v2) Compilefor DOS, using version 2 of the Go32 extender.

FreeBSD Compilefor FREEBSD.

Linux Compilefor LINUX.

0OS/2 Compile for OS/2 (using the EM X extender)

Win32 Compile for windows 32 bit.

The currently selected target operating system is shown in the menu item in the " Compile" menu.
Standard this should be the operating system for which the IDE was compiled.

6.11.4 Compiler options

The menu " Options|Compiler” alows to set other options that affect the compilers behaviour.
When this menu item is chosen, adialog pops up that displays several tabs.

There are 5 tabs:

66

CHAPTER 6. THE IDE

Syntax Here options can be set that affect the various syntax aspects of the code. They correspond
mostly to the - S option on the command line (section 5.1.5, page 27).

Code generation These options control the generated code; they are mostly concerned with the - C
and - X command-line options.

Verbose These set the verbosity of the compiler when compiling. The messages of the compiler are
shown in the compiler messages window (can be called with F12).

Browser options concerning the generated browser information. Browser information needs to be
generated for the symbol browser to work.

Assembler Options concerning the reading of assembler blocks (-R on the command line) and the
generated assembler (- A on the command line)

Under the tab pages, the Conditional de nes entry box is visible; here symbols to de ne can be

entered. The symbols should be separated with semicolons. The syntax tab of the compiler options
dialogisshownin gure (6.23).

Figure 6.23: The syntax options tab

S ntax | Code eneration I erbhoze | FOWSER I szembler

Syntax Switches

Conditio al defines

In this dialog, the following options can be set:

Delphi 2 extensionson Enables the use of classes and exceptions (- Sd, (see page 5.1.5) on the
command-line).

C-like operators Allowsthe use of some extended operators such as+=, - = etc. (- Sc, (see page
5.1.5) on the command-line).

Stop after rst error when checked, the compiler stops after the rst error. Normally the compiler
continues compiling till afatal error isreached. (- Se, (see page 5.1.5) on the command-line)

Allow label and goto Allow the use of label declarations and goto statements (- Sg, (see page 5.1.5)
on the command line).

C++ styled inline alowsthe use of inlined functions (- Sc, (see page 5.1.5) on the command-line).

TP/BP 7.0 compatibility Try to be more Turbo Pascal compatible (- So, (see page 5.1.5) on the
command-line).

Delphi compatibility try to be more Delphicompatible (- Sd, (see page 5.1.5) on the command-
line).

67

CHAPTER 6. THE IDE

Allow STATIC in objects Allow the St at i ¢ modi er for object methods (- St , (see page 5.1.5)
on the command-line)

Strict var-strings Not used.
Extended syntax Not used.
Allow MM X operations Allow MMX operations.

The code generation tab of the compiler options dialog is shown in gure (6.24).

Figure 6.24: The code generation options tab
I

I g ntax | | erhosze I POWSER | ssembler

Optimizations

[1 Range checking
5
I

1]

Tariet irucessur

Conditio al defines

In this dialog, the following options can be set:

Run-time checks Controls what run-time checking code is generated. If such a check fails, arun-
time error is generated. the following checking code can be generated:

Range checking Code that checks the results of enumeration and subset type operations is
generated (- Cr, (see page 5.1.4) command-line option)

Stack checking Code that checks whether the stack limit is not reached is generated (- Cs,
(see page 5.1.4) command-line option)

I/O checking Codethat checkstheresult of 10 operationsisgenerated. (- G , (seepage5.1.4)
command-line option).

Integer over ow checking Theresult of integer operationsis checked (- Co, (see page 5.1.4)
command-line option)

Target processor Set the target process for optimizations. The compiler can use different optimiza-
tions for different processors. This corresponds to the Op option.

i1386/i486 Codeis optimized for less than Pentium processors.
Pentium/pentiumMM X Codeis optimized for Pentium processors.
PPro/P11/c6x86/K6 Code is optimized for Pentium pro and higher processors.

Optimizations What optimizations should be used when compiling:

Generatefaster code Corresponds to the - OG command-line option.
Generate smaller code Correspondsto the - Og command-line option.

CHAPTER 6. THE IDE

Useregister variables Correspondsto the - Or command-line option.
Uncertain optimizations Corresponds to the - Qu command-line option.
Level 1 optimizations Correspondsto the Ol command-line option.
Level 2 optimizations Correspondsto the OL command-line option.

More information on these switches can be found in section 5.1.4, page 24. The verbose tab of the
compiler options dialog is shown in gure (6.25).

Figure 6.25: The verbosity options tab

8 ntax Code eneration | | FOWSER | ssemhler

[1 Warnings

Conditio al defines

Inthisdialog, the following verbosity options (- v, (see page 5.1.2) on the command-line) can be set:

Warnings Generate warnings, corresponds to - vw on the command-line.

Notes Generate notes, correspondsto - vn on the command-line.

Hints Generate hints, corresponds to - vh on the command-line.

General info Generate general information, correspondsto - vi on the command-line.

User tried info Generateinformation onused andtried les. Correspondsto - vut onthe command-
line.

All Switch on full verbosity. Correspondsto - va on the command-line.

Show all procedureif error If an error using overloaded procedure occurs, show all procedures.
Corresponds to - vb on the command-line.

The browser tab of the compiler options dialog is shownin gure (6.26).
In this dialog, the browser options can be set:
No browser (default) no browser information is generated by the compiler.

Only global browser Browser information is generated for global symbols only, i.e. symbols de-
ned not in a procedure or function (- b on the command-line)

Local and global browser Browser information is generated for all symbols, i.e. also for symbols
that are de ned in procedures or functions (- bl on the command-line)

69

CHAPTER 6. THE IDE

Figure 6.26: The browser options tab
1

I 5 ntax | Code eneration I erhoze | szemhler

Cx*} Ho brouser

a
L

Conditio al defines

Figure 6.27: The assembler options tab
|

| % ntax | Code eneration | erhoze | POWSER |

Assembler reader

default output
G

Aszembler info

H
r T
t C

Conditio al defines

Remark: If no browser information is generated, the symbol browser of the IDE will not work.
The assembler tab of the compiler options dialog is shown in gure (6.27).
In this dialog, the assembler reader and writer options can be set:

Assembler reader Thisallowsto set the style of the assembler blocks in the sources:

Direct assembler The assembler blocks are copied as-is to the output (- Rdi rect on the
command-line).

AT& T assembler Theassembleriswrittenin AT&T styleassembler (- Rat t on the command-
line).

Intel styleassembler The assembler iswrittenin | nt el style assembler blocks (- Ri nt el
on the command-line).

remark that this option is global, but locally the assembler style can be changed with compiler
directives.

CHAPTER 6. THE IDE

Assembler info When writing assembler les, this option decides which extrainformation iswritten
to the assembler lein comments:

List source The source lines are written to the assembler les together with the generated
assembler (- al on the command line).

List register allocation The compilersinternal register allocation/deallocation information is
written to the assembler le(- ar on the command-line).

List temp allocation The temporary register allocation/deallocation is written to the assem-
bler le. (- at onthe command-line).

The latter two of these options are mainly useful for debugging the compiler itself, it should
be rarely necessary to use these.

Assembler output This option tells the compiler what assembler output should be generated.

Use default output This depends on the target.
Use GNU as assemble using GNU as (- Aas on the command-line).

Use NASM coff produce NASM coff assembler (go32v2, - Anasntof f on the command-
line)

Use NASM elf produce NASM elf assembler (LINUX, - Anasmrel f on the command-line).
Use NASM obj produce NASM obj assembler (- Anasnobj on the command-line).

Use MASM produce MASM (Microsoft assembler) assembler (- Amasmon the command-
line).

Use TASM produce TASM (Turbo Assembler) assembler (- At as mon the command-line).

Use coff Write binary coff lesdirectly using theinternal assembler (go32v2, - Acof f onthe
command-line).

Use pecoff Write binary pecoff les lesdirectly using the internal writer. (Win32)

6.11.5 Linker options

The linker options can be set in the menu " Options|Linker™ . It allows to determine how libraries
and units are linked, and how the linker should be called. Thelinker optionsdialog isshownin gure
(6.28).

Figure 6.28: The linker options dialog

Linking stage
EET Call T Shler T AT
1]

5
m

The following options can be set:

Call linker after If thisoptionis set then a script iswritten which calls the linker. This corresponds
tothe- s, (see page 5.1.4) on the command-line.

Preferred library type With this option, the type of library to be linked in can be set:

71

CHAPTER 6. THE IDE

Target default This depends on the platform.

Dynamic libraries Triestolink in unitsin dynamical libraries. (option - XD on the command-
line)

Static libraries Triesto link in unitsin statical libraries. (option - XS on the command-line)

Smart libraries Triesto link in unitsin smartlinked libraries. (option - XX on the command-
line)

6.11.6 Memory sizes

The memory sizes dialog (reachable via" optiong|M emory sizes") allowsto enter the memory sizes
for the project. The memory sizesdialog is shown in gure (6.29).

Figure 6.29; The memory sizes dialog

131872
eap sicze 2027152

The following sizes can be entered:

Stack size Setsthe size of the stack in bytes; (option - Cs on the command line). This size may be
ignored on some systems.

Heap size Setsthe size of the heap in bytes; (option - Ch on the command-line). Note that the heap
grows dynamically as much asthe OS allows.

6.11.7 Debug options

In the debug options dialog some options for inclusion of debug information in the binary can be
set; it is also possible to add additional compiler options in this dialog. The debug options dialog is
shown in gure (6.30).

The following options can be set:

Debugging information tells the compiler which debug information should be compiled in. One of
following options can be chosen:

Strip all debug symbolsfrom executable Will strip al debug nd symbol information from
the binary. (option - Xs on the command-line).

Generate debug symbol information include debug information in the binary (option - g on
the command-line). Please note that no debug information for units in the Run-Time
Library will beincluded, unless aversion of the RTL compiled with debug informationis
available. Only units speci ¢ to the current project will have debug information included.

72

CHAPTER 6. THE IDE

Figure 6.30: The debug options dialog

5
d

“*) Generate also backtrace line information

Prufilini Switches

dditional compiler args
b i1

DEhuﬁiEE edirection

Generate also backtrace linesinformation Will compile with debug information, and will
additionally include the lineinfo unit in the binary, so in case of an error the backtrace
will contain the lenames and linenumbers of proceduresin the call-stack. (Option - gl
on the command-line)

Pro ling switches Tellsthe compiler whether or not pro le code should be included in the binary.

No proleinformation Has no effect, asit is the default.

Generate Prole codefor gprof [If checked, pro ling code isincluded in the binary (option
- p on the command-line).

Addition compiler args Here arbitrary options can be entered as they would be entered on the
command-line, they will be passed on to the compiler astyped here.

Debuggeeredirection If checked, an attempt will be made to redirect the output of the program
being debugged to another window (terminal).

6.11.8 The switches mode
The IDE allows to save a set of compiler settings under a common name; it provides 3 names under
which the switches can be saved:

Normal For normal (fast) compilation.

Debug For debugging; intended to set most debug switches on. Also useful for setting conditional
de nesthat e.g. alow to include some debug code.

release For acompile of the program as it should be released, debug information should be off, the
binary should be stripped, and optimizations should be used.

Selecting one of these modes will load the compiler options as they were saved the last time the
selected mode was active, i.e. it doesn’t speci cally set or unset options.

When setting and saving compiler options, be sure to select the correct switch mode rst; it makes
little sense to set debug options while the release switch is active. The switches mode dialog is shown
in gure (6.31).

73

CHAPTER 6. THE IDE

Figure 6.31: The switches mode dialog

Cx*3) Mormal

6.12 CustomizingthelDE

The IDE iscon gurablein awiderange: Colors can be changed, screen resolution. The con guration
setting can reached via the sub-menu Envi r onnent inthe Qpt i ons menu.

6.12.1 Preferences

The preferences dialog is called by the menu item " Options|Environment|Preferences’ . The pref-
erencesdialog isshown in gure(6.32).

Figure 6.32: The preferences dialog
|

- Uideo mode

- Desktop file
¢ > C rrent directory
(%) Conf g file directory

- Auto save Options
[1 Editor iles [1 uto track source
[¥] nvironment [#] C ose on go to source
[#]1 esktop [¥]1 C ange dir on open

Video modes Thedrop down list at thetop of the dialog allowsto select avideo mode. The available
video modes depend on the system on which the IDE is running.

Remark:

1. The video mode must be selected by pressing space or clicking on it. If the drop down
list is opened while leaving the dialog, the new video mode will not be applied.

74

CHAPTER 6. THE IDE

2. For the pos version of the IDE, the following should be noted: When using VESA
modes, the display refresh rate may be very low. On older graphics card (1998 and
before), it is possible to use the UniVBE driver of SciTech®

Desktop File Speci eswhere the desktop leis saved: the current directory, or the directory where
thecon g lewasfound;

Auto save Hereit is possible to set which les are saved when a program is run or when the IDE is
exited:
Editor les The contents of all open edit windows will be saved.
Environment The current environment settings will be saved
Desktop The desktop le with all desktop settings (open windows, history lists, breakpoints
etc.) will be saved.
Options Some specia behaviour of the IDE can be speci ed here:

Auto track source

Close on go to source When checked, the messages window is closed when the’ go to source
line' action is executed.

Change dir on open When a leisopened, thedirectory of that leismade the current work-
ing directory.

6.12.2 The desktop

The desktop preferences dialog alows to specify what elements of the desktop are saved across
sessions, i.e. they are saved when the IDE isleft, and they are again restored when the IDE is started
the next time. They are saved in a le fp.dsk. The desktop preferences dialog is shown in gure
(6.33).

Figure 6.33: The desktop preferences dialog

[£] History lists
C
)

The following elements can be saved and restored across | DE sessions:

51t can be downloaded from http://www.informatik.fh-muenchen.de/ ifw98223/vbehz.htm

75

http://www.informatik.fh-muenchen.de/~{}ifw98223/vbehz.htm

CHAPTER 6. THE IDE

History lists Most entry boxes have a history list where previous entries are saved and can be se-
lected. When this option is saved, these entries are saved in the desktop le. On by default.

Clipboard content When checked, the contents of the clipboard is also saved to disk. Off by default.

Watch expressions When checked, all watch expressions are saved in the desktop le. Off by de-
fault.

Breakpoints When checked, all break points with their properties are saved in the desktop le. Off
by default.

Open windows When checked, the list of lesin open editor windows is saved in the desktop e,
and the windows will be restored the next time the IDE isrun. On by default.

Symbol information When checked, theinformation for the symbol browser is saved in the desktop
le. Off by default.

CodeCompletewordlist When checked, the list of code-completion wordsis saved. On by default.
CodeTemplates When checked, the de ned code-templates are saved. On by default.

Remark: Theformat of the desktop le changes between editor versions, so when installing a new version, it

may be necessary to delete the fp.dsk leswherever the IDE searches for them.

6.12.3 The Editor

Several aspects of the editor window behaviour can be set in this dialog. The editor preferences
dialog isshownin gure (6.34).

Figure 6.34: The editor preferences dialog

[¥]1 Create backup files

ab zize IENR Indent =i <IF

iﬁhlight extensions

File atterns needini tahs

The following elements can be set in the editor preferences dialog:

Create backup les Whenever an editor leissaved, abackup ismade of theold le. On by default.

Auto indent mode Smart indenting ison. This means that pressing ENTER will position the cursor
on the next line in the same column where text starts on the current line. On by default.

76

Remark:

CHAPTER 6. THE IDE

Usetab characters When the tab key is pressed, use a tab character. Normally, when the tab key
is pressed, spaces are inserted. When this option is checked, tab characters will be inserted
instead. Off by default.

Backspace unindents Pressing the Bk sp key will unindent if the beginning of the text on the current
lineisreached, instead of deleting just the previous character. On by default.

Persistent blocks When a selection is made, and the cursor is moved, the selection is not destroyed,
i.e. the selected block stays selected. On by defaullt.

Syntax highlight Use syntax highlighting on the les that have an extension which appearsin the
list of highlight extensions. On by default.

Block insert cursor Theinsert cursor is ablock instead of an underscore character. By default the
overwrite cursor is ablock. This option reverses that behaviour. Off by default.

Vertical blocks When selecting blocks over several lines, the block doesn’t select the wholelinesin
the block, it selects the linestill the column on which the cursor islocated. Off by default.

Highlight column When checked, the current column (i.e. the column where the cursor is) is high-
lighted. Off by default.

Highlight row When checked, the current row (i.e. the row where the cursor is) is highlighted. Off
by defaullt.

Auto closing brackets When an opening bracket character is typed, the closing bracket is also in-
serted at once. Off by default.

Keep trailing spaces When saving a le, the spaces at the end of lines are stripped off. This be-
haviour disables that behaviour, i.e. any trailing spaces are also saved to le. Off by default.

Codecomplete enabled Enable code completion. On by default.
enablefolds ???. Off by default.

Tab size The number of spaces that are inserted when the TAB key is pressed. The default value is
8.

Indent size The number of spaces a block is indented when calling the block indent function. The
default value is 2.

Highlight extensions When syntax highlighting ison, thelist of |e masks entered herewill be used
to determine which les are highlighted. File masks should be separated with semicolon (;)
characters. The default is *.pas;*.pp;*.inc.

File patternsneeding tabs Some les (such as makeles) need actua tab characters instead of
spaces. Here a series of le masks can be entered for which tab characters will aways be
used. Default is make*;make*.*.

These optionswill not be applied to aready opened windows, only newly opened windows will have
these options.

6.12.4 Mouse

The mouse options dialog is called by the menu item " Options|Environment|Mouse” . It allows to
adjust the behaviour of the mouse as well as the sensitivity of the mouse. The mouse options dialog
isshownin gure(6.35).

77

CHAPTER 6. THE IDE

Figure 6.35: The mouse options dialog
|

ouse douhle click
Fast Medium

Alt+Right mouse hutton

¢ » Hothing

Mouse doubleclick The slider can be used to adjust the double click speed. Fast means that the
time between two clicksis very short, slow means that the time between two mouse clicks can
be quite long.

Rever se mouse buttons the behaviour of the left and right mouse buttons can be changed by by
checking the checkbox; thisis especially useful for left-handed people.

Ctrl+Right mouse button Assigns an action to aright mouse button click while holding the CTRL
key pressed.

Ctrl+L eft mouse button Assignsan action to aleft mouse button click while holding the CTRL key
pressed.

The following actions can be assigned to CTRL-right mouse button or ALT-right mouse button:

Topic search The keyword at the mouse cursor is searched in the help index.
Gotocursor The program is executed until the line where the mouse cursor is located.
Breakpoint Set abreakpoint at the mouse cursor position.

Evaluate Evaluate the value of the variable at the mouse cursor.

Add watch Add the variable at the mouse cursor to the watch list.

Browse symbol The symbol at the mouse cursor is displayed in the browser.

6.12.5 Colors

Almost all elements of the IDE such as borders input elds, buttons and so on can have their color
set inthisdialog. The dialog sets the colors for all elements at once, i.e. it is not so that the color of
one particular button can be set.

The syntax highlighting colors for the editor windows of the IDE can also be set in this dialog. The
colorsdialog isshownin gure (6.36).

The following elements are visible in the color dialog:

78

CHAPTER 6. THE IDE

Figure 6.36: The colors dialog

oreground

tem
Frame passive

Browser

ackiruund

Group Here the group to be customized is displayed; A group is a speci ¢ window or series of
windows in the editor. A special group is Syntax which sets the colors for syntax highlighting.
Browser Setsthe colorsfor the symbol browser window.

Clock Setsthe colorsfor the clock in the menu.

Desktop Setsthe colors for the desktop.

Dialogs Setsthe colors for the dialog windows.

Editor Setsthe colorsfor the editor windows.

Help Setsthe colorsfor the help windows.

Menus Sets the colors used in the menus.

Syntax Setsthe colors used when performing syntax highlighting in the editor windows.

item Here the item for the current group can be selected. The foreground and background of this
item can be set using the color selectors on the right of the dialog.

Foreground Setsthe foreground color of the selected item.
background Sets the background color of the selected item.
Sampletext This showsthe colors of the selected item in a sample text.

Setting agood color schemeisimportant especially for syntax highlighting; agood syntax highlight-
ing scheme helpsin eliminating errors when typing, without needing to compile the sources.

6.13 Thehep system

Moreinformation on how to handle the IDE, or about the use of various callsin the RTL, explanations
regarding the syntax of a Pascal statement, can be found in the help system. The help system is
activated by pressing F1.

79

CHAPTER 6. THE IDE

6.13.1 Navigating in the help system

The help system contains hyperlinks; these are sensitive locations that lead to another topic in the
help system. They are marked by a different color. The hyperlinks can be activated in 2 ways:

1. by clicking them with the mouse,

2. by using the TAB and SHIFT-TAB keysto move between the different hyperlinks of a page and
the ENTER key can be used to activate them.

The contents of the help system isdisplayed, if SHIFT-F1 is pressed. To go back to the previous help
topic, press ALT-F1. This also works if the help window isn’t displayed on the desktop; the help
window will then be activated.

6.13.2 Working with help les
The IDE contains a help system which can display the following le formats:

TPH The help format for the Turbo Pascal help viewer.
INF The OS/2 help format.

NG The Norton Guide Help format.

HTML HTML les.

In future some more formats may be added. However, the above formats should cover already awide
spectrum of help les available.

Remark: Concerning the support for HTML les the following should be noted:

1. The HTML viewer of the help system islimited, it can only handle the most basic HTML les
(graphics excluded), sinceit is only designed to display the Free Pascal help les. ©.

2. Whenthe HTML help viewer encountersagraphics le, it will try and nd a le with the same
name but an extension of .ans; If this leisfound, thiswill be interpreted asa le with ANS
escape sequences, and these will be used to display a text image. The displays of the IDE
dialogsin the IDE help les are made in this way.

The menu item " Help|Files' permitsto add and delete help lesto thelist of lesin the help table
of contents. The help lesdialog isdisplayedin gure(6.37).

The dialogs lists the les that will be presented in the table of contents window of the help system.
Each entry has asmall descriptive title and a lename next to it. The following actions are available
when adding help les:

New Addsanew le. IDE will display a prompt, in which the location of the help le should be
entered.

If the added leisan HTML le, adialog box will be displayed which asks for atitle. This
title will then be included in the contents of help.

Delete Deletes the currently highlighted le from the help system. It is not deleted from the hard
disk, only the help system entry is removed.

Cancel Discardsall changes and closes the dialog.

6...but feel free to improve it and send patches to the Free Pascal development team...

80

CHAPTER 6. THE IDE

Figure 6.37: The help lesdiaog

Frequently Asked Questions — C:I%

OK Savesthe changes and closes the dialog.

The Free Pascal documentation in HTML format can be added to the IDE’s help system, this way
the documentation can be viewed from within the IDE. If Free Pascal has been installed using the
installer, the installer should have added the FPC documentation to the list of help les, if the docu-
mentation was installed as well.

6.13.3 The about dialog

The about dialog, reachable through (" Help|About...") shows someinformation about the IDE, such
asthe version number, the date it was built, what compiler and debugger it uses. When reporting bugs
about the IDE, please use the information given by this dialog to identify the version of the IDE that
was used.

It also displays some copyright information.

6.14 Keyboard shortcuts

A lot of keyboard shortcuts used by the IDE are compatible with WordStar and should be well known
to Turbo Pascal users.

Below are the following tables:

In table (6.4) some shortcuts for handling the IDE windows and Help are listed.

In table (6.5) the shortcuts for compiling, running and debugging a program are presented.
In table (6.6) the navigation keys are described.

In table (6.7) the editing keys are listed.

In table (6.8) listsall block command shortcuts.

Intable (6.9) all selection-changing shortcuts are presented.

N o g~ wDdhd Rk

In table (6.10) some general shortcuts are presented, which do not tinthe previous categories.

8l

CHAPTER 6. THE IDE

Table 6.4: General

Command Key shortcut Alternative
Help F1
Goto last help topic ALT-F1
Search word at cursor position in CTRL-F1
help
Help index SHIFT-F1
Close active window ALT-F3
Zoom/Unzoom window F5
Move/Zoom active window CTRL-F5
Switch to next window F6
Switch to last window SHIFT-F6
Menu F10
Local menu ALT-F10
List of windows ALT-0
Active another window ALT-<DIGIT>
Call grep utility SHIFT-F2
Exit IDE ALT-X
Table 6.5: Compiler
Command Key shortcut ~ Alternative
Reset debugger/program CTRL-F2
Display call stack CTRL-F3
Run til cursor F4
Switch to user screen ALT-F5
Traceinto F7
Add watch CTRL-F7
Step over F8
Set breakpoint at current line CTRL-F8
Make F9
Run CTRL-F9
Compile the active source le A LT-F9
Message F11
Compiler messages F12

CHAPTER 6. THE IDE

Table 6.6: Text navigation

Command Key shortcut Alternative
Char left ARROW LEFT CTRL-S
Char right ARROW RIGHT CTRL-D
Lineup ARROW UP CTRL-E
Line down ARROW DOWN CTRL-X
Word left CTRL-ARROW LEFT CTRL-A
Word right CTRL-ARROW RIGHT CTRL-F
Scroll oneline up CTRL-W
Scroll one line down CTRL-Z
Page up PAGEUP CTRL-R
Page down PAGEDOWN
Beginning of Line Posl1 CTRL-Q-S
End of Line END CTRL-Q-D
First line of window CTRL-POs1 CTRL-Q-E
Last line of window CTRL-END CTRL-Q-X
Firstlineof le C TRL-PAGEUP CTRL-Q-R
Lastlineof le C TRL-PAGEDOWN CTRL-Q-C
Last cursor position CTRL-Q-P
Find matching block delimiter CTRL-Q-[
Find last matching block delimiter ~ CTRL-Q-]
Table 6.7: Edit

Command Key shortcut ~ Alternative

Delete char DEL CTRL-G

Delete left char BACKSPACE CTRL-H

Delete line CTRL-Y

Deletetil end of line CTRL-Q-Y

Delete word CTRL-T

Insert line CTRL-N

Toggle insert mode INSERT CTRL-V

83

CHAPTER 6. THE IDE

Table 6.8: Block commands

Command Key shortcut Alternative
Goto Beginning of selected text CTRL-Q-B
Goto end of selected text CTRL-Q-K
Select current line CTRL-K-L
Print selected text CTRL-K-P
Select current word CTRL-K-T
Delete selected text CTRL-DEL CTRL-K-Y
Copy selected text to cursor posi- CTRL-K-C
tion

Move selected text to cursor posi- CTRL-K-V
tion

Copy selected text to clipboard CTRL-INS
Move selected text to the clipboard ~ SHIFT-DEL
Indent block one column CTRL-K-I
Unindent block one column CTRL-K-U
Insert text from clipboard SHIFT-INSERT
Insert le C TRL-K-R
Write selected text to le C TRL-K-W
Uppercase current block CTRL-K-N
Lowercase current block CTRL-K-O
Uppercase word CTRL-K-E

L owercase word CTRL-K-F

CHAPTER 6. THE IDE

Table 6.9: Change selection

Command Key shortcut Alternative
Mark beginning of selected text CTRL-K-B
Mark end of selected text CTRL-K-K
Remove selection CTRL-K-Y

Extend selection one char to the left
Extend selection one char to the
right

Extend selection to the beginning of
theline

Extend selection to the end of the
line

Extend selection to the same col-
umn in the last row

Extend selection to the same col-
umn in the next row

Extend selection to the end of the
line

Extend selection one word to the
| eft

Extend selection one word to the
right

Extend selection one page up
Extend selection one page down
Extend selection to the beginning of
the le

Extend selection to the end of the
le

SHIFT-ARROW LEFT
SHIFT-ARROW RIGHT

SHIFT-Pos1

SHIFT-END

SHIFT-ARROW UP
SHIFT-ARROW DOWN
SHIFT-END
CTRL-SHIFT-ARROW LEFT
CTRL-SHIFT-ARROW RIGHT
SHIFT-PAGEUP
SHIFT-PAGEDOWN

CTRL-SHIFT-POS1

CTRL-SHIFT-END

CTRL-SHIFT-PAGEUP

CTRL-SHIFT-PAGEUP

Table 6.10: Misc. commands

Command Key shortcut Alternative
Save le F2 C TRL-K-S
Open le F3

Search CTRL-Q-F

Search again CTRL-L

Search and replace CTRL-Q-A

Set mark CTRL-K-N (where n can be 0..9)

Goto mark CTRL-Q-N (wheren can be 0..9)

Undo ALT-BACKSPACE

85

Chapter 7

Porting Turbo Pascal Code

Free Pascal was designed to resemble Turbo Pascal as closely as possible. There are, of course,
restrictions. Some of these are due to the fact that Free Pascal is a 32-bit compiler. Other restrictions
result from the fact that Free Pascal works on more than one operating system.

In general we can say that if you keep your program code close to ANSI Pascal, you will have no
problems porting from Turbo Pascal, or even Delphi, to Free Pascal. To alarge extent, the constructs
de ned by Turbo Pascal are supported. Thisis even more so if you usethe - So or - S2 switches.

In the following sections we will list the Turbo Pascal constructs which are not supported in Free
Pascal, and we will list in what ways Free Pascal extends the Turbo Pascal language.

7.1

Thingsthat will not work

Here we give alist of things which are de ned/allowed in Turbo Pascal, but which are not supported
by Free Pascal. Where possible, we indicate the reason.

1
2.

Duplicate case labels are not allowed. Thisisabug in Turbo Pascal and will not be changed.

Parameter lists of previously de ned functions and procedures must match exactly. The reason
for thisis the function overloading mechanism of Free Pascal. (however, the - So, (see page
5.1.5) option solves this.)

The MEM NMEMW MEM. and PORT variables for memory and port access are not avail-
able in the system unit. This is due to the operating system. Under DOS, the extender unit
(G0O32.PPU) implements the mem constuct. under LINUX, the ports unit implements such a
construct.

PROTECTED, PUBLI C, PUBLI SHED, TRY, FINALLY, EXCEPT, RAI SEarereserved
words. This means you cannot create procedures or variables with the same name. While they

are not reserved words in Turbo Pascal, they are in Delphi. Using the - So switch will solve
this problem if you want to compile Turbo Pascal code that uses these words.

Thereserved words FAR, NEARareignored. Thisis because Free Pascal isa 32 bit compiler,
so they're obsol ete.

| NTERRUPT will work only on the DOS target.

Boolean expressions are only evaluated until their result is completely determined. The rest of
the expression will beignored. Thisis con gurable as of FPC 1.9.

86

CHAPTER 7. PORTING TURBO PASCAL CODE

8. By default the compiler uses AT&T assembler syntax. This is mainly because Free Pascal
uses GNU as. However, other assembler forms are available. For more information, see
Programmers guide.

9. Turbo Vision is hot completely available. There is FreeVision, but the degree of compatibility
with Turbo Vision is unclear at this time.

10. The’overlay’ unitisnot available. It alsoisn’t necessary, since Free Pascal isa 32 bit compiler,
so program size shouldn’t be a point.

11. There are more reserved words. (see appendix B for alist of all reserved words.)
12. The command-line parameters of the compiler are different.

13. Compiler switches and directives are mostly the same, but some extra exist.

14. Units are not binary compatible.

15. Setsare always 4 bytesin Free Pascal; this means that some typecasts which were possiblein
Turbo Pascal are ho longer possible in Free Pascal.

16. A leis opened for output only (using f mOut put) when it is opened with Rewrite. In
order to be able to read from it, it should be reset with Reset .

17. Destructors cannot have parameters. This restriction can be solved by using the - So switch.
18. There can be only one destructor. This restriction can also be solved by using the - So switch.

19. The order in which expressions are evaluated is not necessarily the same. In the following
expression:

a:=g9(2) + f(3);

it is not guaranteed that g(2) will be evaluated beforef (3) .

7.2 Thingswhich are extra

Herewe give alist of thingswhich are possible in Free Pascal, but which didn’t exist in Turbo Pascal
or Delphi.

1. There are more reserved words. (see appendix B for alist of all reserved words.)
2. Functions can also return complex types, such as records and arrays.

3. You can handle function results in the function itself, as a variable. Example

function a : |ongint;
begi n
a: =12,
whi l e a>4 do
begin
{...}
end;
end;

1At the time of writing, FreeVision has been taken off the net, because there are some copyright issues which make it
impossible to distribute it.

87

file:../prog/prog.html

CHAPTER 7. PORTING TURBO PASCAL CODE

The example above would work with TR, but the compiler would assume that the a>4 is a
recursive call. To do arecursive call in thisyou must append () behind the function name:

function a : |ongint;

begin
a. =12;
{ this is the recursive call }
if a()>4 then
begi n
{...}
end;
end;

. Thereispartial support of Delphi constructs. (seethe Programmers guide for moreinformation
on this).

. Theexi t cal acceptsareturn value for functions.
function a : |ongint;

begin
a: =12;
if a>4 then
begi n
exit(a*67); {function result upon exit is a*67 }
end;
end;

. Free Pascal supports function overloading. That is, you can de ne many functions with the
same name, but with different arguments. For example:

procedure DoSonething (a : longint);
begin
{...}

end;

procedure DoSonething (a : real);
begin
{...}

end;

You can then call procedure DoSonet hi ng with an argument of type Longi nt or Real .
This feature has the consequence that a previously declared function must always be de ned
with the header completely the same:

procedure x (v : longint); forward;

{...}

procedure x;{ This will overload the previously declared x}
begi n

{...}

end;

88

file:../prog/prog.html

CHAPTER 7. PORTING TURBO PASCAL CODE

This construction will generate a compiler error, because the compiler didn’t nd a de nition

of procedure x (v : longint); . Insteadyou should de neyour procedure x as:
procedure x (v : longint);

{ This correctly defines the previously declared x}

begi n

{...}

end;

(The - So, (see page 5.1.5) switch disables overloading. When you use it, the above will
compile, asin Turbo Pascal.

7. Operator overloading. Free Pascal allowsto overload operators, i.e. you can de nee.g. the’+’
operator for matrices.

8. On FAT16 and FAT32 systems, long le names are supported.

7.3 Turbo Pascal compatibility mode

When you compile a program with the - So switch, the compiler will attempt to mimic the Turbo
Pascal compiler in the following ways:

e Assigning a procedural variable doesn’t require a @ operator. One of the differences between
Turbo Pascal and Free Pascal isthat the latter requires you to specify an address operator when

assigning a value to a procedural variable. In Turbo Pascal compatibility mode, this is not
required.

e Procedure overloading is disabled. If procedure overloading is disabled, the function header
doesn’'t need to repeat the function header.

e Forward de ned procedures don't need the full parameter list when they are de ned. Due to
the procedure overloading feature of Free Pascal, you must always specify the parameter list
of afunction when you de ne it, even when it was declared earlier with For war d. In Turbo
Pascal compatibility mode, there is no function overloading, hence you can omit the parameter
list:

Procedure a (L : Longint); Forward,

Procedure a ; { No need to repeat the (L : Longint) }
begin
end;
e recursive function calls are handled differently. Consider the following example :
Functi on expr : Longint;
begi n
iE;<.pr: =L:

89

CHAPTER 7. PORTING TURBO PASCAL CODE

Witeln (Expr);
end;
In Turbo Pascal compatibility mode, the function will be called recursively whenthewr i t el n
statement is processed. In Free Pascal, the function result will be printed. In order to call the
function recusively under Free Pascal, you need to implement it as follows :
Function expr : Longint;

begin

é(br:zL:
Witeln (Expr());

end;

Any text after the nal End. statement isignored. Normally, thistext is processed too.

You cannot assign procedural variablesto untyped pointers; so the following isinvalid:

a: Procedure;

b: Pointer;
begin
b :=a; // Error will be generated.

The @ operator is typed when applied on procedures.

You cannot nest comments.

7.4 A noteonlong lenamesunder DOS

Under WINDOWS 95 and higher, long lenames are supported. Compiling for the win32 target
ensures that long lenames are supported in all functionsthat do le or disk accessin any way.

Moreover, Free Pascal supports the use of long Ienames in the system unit and the dos unit also
for go32v2 executables. The system unit contains the boolean variable LFNsupport. If itis set
to Tr ue then al system unit functions and DOS unit functions will use long le names if they are
available. Thisshould be so on WiNDows 95 and 98, but not on WINDOWS NT or WiNDow's 2000.
The system unit will check thisby calling bos function 71A0h and checking whether long lenames
are supported on the C: drive.

It is possible to disable the long Iename support by setting the LFNSupport variableto Fal se;
but in genera it is recommended to compile programs that need long Ienames as native Win32
applications;

90

Chapter 8

Utilitiesthat come with Free Pascal

Besides the compiler and the Run-Time Library, Free Pascal comes with some utility programs and
units. Here we list these programs and units.

8.1 Demo programsand examples

Also distributed with Free Pascal comes a series of demonstration programs. These programs have
no other purpose than demonstrating the capabilities of Free Pascal. They are located in the demo
directory of the sources.

All example programs of the documentation are available. Check out the directories that end on ex
in the documentation sources. There you will nd all example sources.

8.2 fpcmake

fpcmake isthe Free Pascal make le constructor program.

It reads a Make le.fpc con guration leand convertsittoa Make le suitable for reading by GNU
make to compile your projects. It issimilar in functionality to GNU autoconf or Imake for making
X projects.

fpcmake accepts lenames of make le description |es asits command-line arguments. For each of
these lesit will create a Make le in the same directory where the le is located, overwriting any
other existing le.

If no options are given, it just attemptsto read the le Make le.fpc in the current directory and tries
to construct a make le from it. any previoudly existing Make le will be erased.

The format of the fpcmake con guration le is described in great detail in the appendices of the
Programmers guide.

8.3 fpdoc - Pascal Unit documenter

fpdoc isaprogram which generatesfully cross-referenced documentation for aunit. 1t generatesdoc-
umentation for each identi er found in the unit’s interface section. The generated documentation can

be in many formats for instance HTML and LaTeX. Unlike other documentation tools, the documen-
tation can bein aseparate le (in XML format), so the sources aren’t cluttered with documentation.

It's companion program makeskel creates an empty XML le with entriesfor all identi ers.

91

file:../prog/prog.html

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

fpdoc and makeskel are described in FPDoc reference guide.

8.4 h2pas- C header to Pascal Unit converter

h2pas attempts to convert a C header le to a pascal unit. it can handle most C constructs that
one ndsin aC header le, and attempts to translate them to their pascal counterparts. see below
(constructs) for afull description of what the translator can handle. The unit with pascal declarations
can then be used to access code writtenin C.

The output of the h2pas program iswritten to a le with the same name as the C header le that was
used as input, but with the extension .pp The output le that h2pas creates can be customized in a
number of ways by means of many options.

8.4.1 Options

The output of h2pas can be controlled with the following options:

-d useext er nal ; for al procedure and function declarations.

-D useexternal |ibname nanme ’'func_nane’ for function and procedure declarations.
-e Emit a series of constants instead of an enumeration type for the C enumconstruct.

-i createaninclude leinstead of aunit (omitsthe unit header).

-I libname specify the library name for external function declarations.

-0 out le Specify the output le name. Default isthe input e name with the extension replaced by
-Pp

-p usethe letter P in front of pointer type parameters instead of .

-s Strip comments from the input le. By default comments are converted to comments, but they
may be displaced, since acomment is handled by the scanner.

-t prepend typedef type names with the letter T (used to follow Borland's convention that all types
should be de ned with T).

-v replace pointer parameters by call by reference parameters. Use with care because some calls can
expectaNi | pointer.

-w Header leisawin32 header le (adds support for some special macros).

-X handle SYS_TRAP of the PAAmOS header les.

8.4.2 Constructs

The following C declarations and statements are recognized:

denes denes are changed into pascal constants if they are simple de nes. macros are changed
- wherever possible to functions, however the arguments are al integers, so these must be
changed manually. Simple expressions in de ne staments are recognized, as are most arith-
metic operators: addition, substraction, multiplication, division, logical operators, comparision
operators, shift operators. The C construct (A ? B : C) is aso recognized and translated to a
pascal construct with an IF statement (thisis buggy, however).

92

file:../fpdoc/fpfoc.html

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

preprocessor statements the conditional preprocessing commands are recognized and trandated

into equivalent pascal compiler directives. The special
#i fdef _ cplusplus

is also recognized and removed.

typedef A typedef statement is changed into a pascal type statement. The following basic types are

recognized:

e char changedtochar.

e fl oat changedtor eal (=doublein Free Pascal).
e i nt changedtol ongi nt .

e | ong changedto| ongi nt .

e | ong int changedtol ongi nt .

e short changedtoi nt eger.

e unsi gned changedto car di nal .

e unsi gned char changedto byt e.

e unsi gned i nt changedtocardi nal .

e unsi gned | ong int changedtocardi nal .
e unsi gned short changedtowor d.

e voi d ignored.

These types are also changed if they appear in the arguments of afunction or procedure.

functions and procedures functions and procedures are translated as well; pointer types may be

speci

changed to call by reference arguments (using the var argument) by using the - p command
line argument. functions that have a variable number of arguments are changed to a function
withanarray of const argument.

ers The ext er n speci er is recognized; however it is ignored. the packed speci er is
also recognised and changed with the PACKRECORDS directive. The const speci erisaso
recognized, but isignored.

modi ers If the- woption is speci ed, then the following modi ers are recognized:

STDCALL
CDECL
CALLBACK
PASCAL

W NAPI

APl ENTRY
W NGDI API

as de ned in the win32 headers. If additionally the - x option is speci ed then the
SYS_TRAP

Speci er is aso recognized.

enums enum constructs are changed into enumeration types; bear in mind that in C enumeration

types can have values assigned to them; Free Pascal also allowsthisto a certain degree. If you
know that values are assigned to enums, it is best to use the - e option to change the enusto a
series of integer constants.

unions unions are changed to variant records.

structs are changed to pascal records, with C packing.

93

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

8.5 h2paspp - preprocessor for h2pas

h2paspp can be used as a simple preprocessor for h2pas. It removes some of the constructs
that h2pas has dif culties with. h2paspp reads one or more C header les and preprocesses them,
writing the result to les with the same name as the originals as it goes along. It does not accept all
preprocesser tokens of C, but takes care of the following preprocessor directives:

#de nesymbol De nesthe new symbol synbol . Note that macros are not supported.
#if symbol The text following this directive isincluded if synbol isde ned.

#ifdef symbol The text following this directive isincluded if synbol isde ned.
#ifndef symbol Thetext following thisdirectiveisincluded if synbol isnot de ned.

#include lename Include directives are removed, unless the - | option was given, in which case
theinclude leisincluded and written to the output le.

#undef symbol The symbol synbol isunde ned.

8.5.1 Usage

h2paspp accepts one or more lenames and preprocesses them. It will read the input, and write
output to a e with the same name unless the - 0 option is given, in which case the leiswrittento
the speci ed le. Note that only one output Iename can be given.

8.5.2 Options

h2paspp has a small number of optionsto control its behaviour:
-dsymbol De nethe symbol synbol before processing is started.
-h emit asmall helptext.

-l include include lesinstead of dropping the include statement.

-oout le If thisoption is given, the output will be writtento a le named out le . Note that only one
output le can be given.

8.6 ppudump program

ppudump is a program which shows the contents of a Free Pascal unit. It is distributed with the
compiler. You can just issue the following command

ppudunp [options] foo.ppu

to display the contents of the foo.ppu unit. You can specify multiple les on the command line.

The options can be used to change the verbosity of the display. By default, all available information
isdisplayed. You can set the verbosity level using the - Vxxx option. Here, xxx is acombination of
the following letters:

h: show header info.

i: show interface information.

94

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

m: show implementation information.
d: show only (interface) de nitions.

s. show only (interface) symbols.

b: show browser info.

a: show everything (default if no -V option is present).

8.7 ppumove program

ppumove is a program to make shared or static libraries from multiple units. It can be compared
with the tpumove program that comes with Turbo Pascal.

It should be distributed in binary form along with the compiler.
Its usage isvery simple:

ppunove [options] unitl.ppu unit2.ppu ... unitn.ppu
Where opt i ons isacombination of

-b: If speci ed, ppumve will generate abatch lethat will contain the external linking and archiving
commands that must be executed. The name of this batch leis pmove.sh on LINUX, and
pmove.bat otherwise.

-d xxx: If speci ed, the output leswill put inthe directory xxx

-exxx: Setsthe extension of the moved unit lesto xxx. By default, thisis.ppl. You don't have to
specify the dot.

-0 xxx: sets the name of the output le, i.e. the name of the le containing all the units. This
parameter is mandatory when you use multiple les. On LINUX, ppumove will prepend this
name with lib if it isn't already there, and will add an extension appropriate to the type of
library.

-q: Causes ppumove to operate silently.

-s. Tells ppumove to make a static library instead of a dynamic one; By default a dynamic library
ismade on LINUX.

-w: Tellsppumovethat it isworking under WiNDows NT. Thiswill change the names of te linker
and archiving program to Idw and arw, respectively.

-h or -?: will display ashort help.

The action of the ppumve program isasfollows: It takes each of the unit les, and modi esit so that
the compile will know that it should look for the unit code in the library. The new unit leswill have
an extension .ppu, this can be changed with the - e option. It will then put together al the object
les of the unitsinto one library, static or dynamic, depending on the presence of the - s option.

The name of this library must be set with the - 0 option. If needed, the pre x lib will be prepended
under LINUX.. The extension will be set to .a for static libraries, for shared libraries the extensions
are. soonlinux,and. dl | under WINDOWS NT and 0s/2.

As an example, the following command

./ ppurove -0 both -e ppl ppu.ppu tinmer. ppu

95

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

under linux, will generate the following output:

PPU- Mover Version 0.99.7
Copyright (c) 1998 by the Free Pascal Devel opnent Team

Processi ng ppu. ppu. .. Done.

Processing tiner.ppu... Done.
Linking timer.o ppu.o
Done.

And it will produce the following les:

1. libboth.so : Theshared library containing the code from ppu.o and timer.o. Under WINDOWS
NT, this lewould be called both.dlIl.

2. timer.ppl : The unit le that tells the Free Pascal compiler to look for the timer code in the
library.

3. ppu.ppl : The unit le that tells the Free Pascal compiler to look for the timer code in the
library.

You could then use or distribute the les libboth.so, timer.ppl and ppu.ppl.

8.8 ptop - Pascal source beauti er

8.8.1 ptop program

ptop is a source beauti er written by Peter Grogono based on the ancient pretty-printer by Ledgard,
Hueras, and Singer, modernized by the Free Pascal team (objects, streams, con gurability etc)

This con gurability, and the thorough bottom-up design are the advantages of this program over the
diverse TurboPascal sourcebeauti erson e.g. SIMTEL.

The program is quite simple to operate:

ptop "[-v] [-i indent] [-b bufsize][-c opts le] in le out le

TheIn le parameter isthe pascal leto be processed, and will be written to out le , overwriting an
existing out le if it exists.

Some options modify the behaviour of ptop:
-h Writes an overview of the possible parameters and commandline syntax.

-c ptop.cfg Read some con guration data from con guration le instead of using the internal de-
faultsthen. A con g leisnot required, the program can operate without one. See also -g.

-i ident Setsthe number of indent spaces used for BEGIN END; and other blocks.

-b bufsize Sets the streaming buffersize to bufsize. Default 255, 0 is considered non-valid and ig-
nored.

-v be verbose. Currently only outputs the number of lines read/written and some error messages.

-g ptop.cfg Writes adefault con guration leto be edited to the le "ptop.cfg"

96

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

8.8.2 The ptop con guration le

Creating and distributing a con guration le for ptop is not necesarry, unless you want to modify the
standard behaviour of ptop. The con guration le is never preloaded, so if you want to use it you
should always specify it witha- ¢ pt op. cf g parameter.

The structure of a ptop con guration le is a simple buildingblock repeated several (20-30) times,
for each pascal keyword known to the ptop program. (see the default con guration leor ptopu.pp
sourceto nd out which keywords are known)

The basic building block of the con guration le consists out of one or two lines, describing how
ptop should react on a certain keyword. First a line without square brackets with the following
format:

keyword=optionl,option2,option3,...

If one of the options is "dindonkey" (see further below), a second line (with square brackets) is
needed like this:

[keyword]=otherkeyword1,otherkeyword2,otherkeyword3, ...

Asyou can see the block contains two types of identi ers, keywords(keyword and otherkeyword1..3
in above example) and options, (optionl..3 above).

Keywor ds are the built-in valid Pascal structure-identi ers like BEGIN, END, CASE, IF, THEN,
ELSE, IMPLEMENTATION. The default con guration le lists most of these.

Besidesthereal Pascal keywords, some other codewords are used for operators and comment expres-
sions. table (8.1)

Table 8.1: keywords for operators

Name of codeword operator

casevar : inacaselabel (unequa ’colon’)
becomes =

del phicomment I

opencomment {or(*

closecomment } or *)

semicolon :

colon
equals
openparen
closeparen
period

Sl B | BRI

The Options codewords de ne actions to be taken when the keyword before the equal sign isfound,
table (8.2)

The option "dindonkey" requires some extra parameters, which are set by a second line for that
option (the one with the square brackets), which is therefore is only needed if the options contain
"dinkdonkey" (contraction of de-indent on assiociated keyword).

"dinkdonkey" deindents if any of the keywords speci ed by the extra options of the square-bracket
lineisfound.

Example: Thelines

el se=cr bef or e, di ndonkey, i nbyt ab, upper
[el se]=if,then, el se

mean the following:

97

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

Table 8.2: Possible options

Option does what

crsupp suppress CR before the keyword.

crbefore force CR before keyword
(doesn’'t go with crsupp :))

blinbefore blank line before keyword.

dindonkey de-indent on associated keywords
(see below)

dindent deindent (always)

spbef space before

spaft space after

gobsym Print symbols which follow a
keyword but which do not
affect layout. prints until
terminators occur.
(terminators are hard-coded in pptop,
still needs changing)

inbytab indent by tab.

crafter force CR after keyword.

upper prints keyword al uppercase

lower prints keyword all lowercase

capital capitalizes keyword: 1st letter

uppercase, rest lowercase.

e The keyword this block is about is else because it's on the LEFT side of both equal signs.

e Theoption cr bef or e signals not to alow other code (so just spaces) before the EL SE key-

word on the same line.

e Theoptiondi ndonkey de-indentsif the parser ndsany of the keywordsin the square brack-

etsline (if then,else)

e Theoptioni nbyt ab meansindent by atab.

e Theoption upper uppercase the keyword (else or Else becomes EL SE)

Try to play with the con g le step by step until you nd the effect you desire. The con gurability
and possihilities of ptop are quite large. E.g. | like all keywords uppercased instead of capitalized,
so | replaced all capital keywordsin the default e by upper.

ptop is still development software, so it is wise to visually check the generated source and try to
compileit, to see if ptop hasn't made any errors.

8.8.3 ptopu unit

The source of the PtoP program is conveniently splitin two les: Oneisaunit containing an object
that does the actual beautifying of the source, the other is a shell built around this object so it can be
used from the command line. This design makes it possible to include the object in some program
(e.g. an IDE) and use its features to format code.

The object resided in the PtoPU unit, and is declared as follows

TPrettyPrinter=0bj ect (TObj ect)

98

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

I ndent : Integer; { How many characters to indent ? }
InS . PStream
Qut S . PStream

D agS : PStream

CcfgS : PStream

Constructor Create;

Function PrettyPrint : Bool ean;
end;

Using this object is very simple. The procedureis asfollows:

1. Create the object, using its constructor.

2. Setthel ns stream. Thisis an open stream, from which pascal source will be read. Thisisa
mandatory step.

3. Set the Qut S stream. This is an open stream, to which the beauti ed pascal source will be
written. Thisis amandatory step.

4. SettheDi agS stream. Any diagnostics will be written to this stream. This step is optional. If
you don't set this, no diagnostics are written.

5. Set the Cf gs stream. A con guration is read from this stream. (see the previous section for
more information about con guration). This step is optional. If you don't set this, a default
con guration is used.

6. Setthel ndent variable. Thisisthe number of spacesto use when indenting. Tab characters
are not used in the program. This step is optional. The indent variableisinitialized to 2.

7. Cdl PrettyPrint. Thiswill pretty-print the source in | ns and write the result to Qut S.
The function returns Tr ue if no errors occurred, Fal se otherwise.

So, aminimal procedure would be:

Procedure C eanUpCode;

var
Ins, QutS : PBuf Stream
PPRi nter : TPrettyPrinter;

begi n
I ns: =New(PBuf Stream I nit (' ugly. pp’, St openRead, TheBuf Si ze));
Qut S: =New(PBuf Stream I ni t (* beauty. pp’, St Creat e, TheBuf Si ze)) ;
PPrinter. Create;
PPrinter.Ins: =lns;
PPrinter.outS: =QutS;
PPrinter.PrettyPrint;

end;

Using memory streams allows very fast formatting of code, and is perfectly suitable for editors.

8.9 rstconv program
The rstconv program converts the resource string les generates by the compiler (when you use

resource string sections) to .po lesthat can be understood by the GNU msgfmt program.
Its usage is very easy; it accepts the following options:

99

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

-i le Usethe speci ed leinstead of stdin asinput le. Thisoption is optional.
-0 le write output to the speci ed le. Thisoption is required.

-f format Speci es the output format. At the moment, only one output format is supported: po for
GNU gettext .po format. It isthe default format.

Asan example:
rstconv -i resdeno.rst -o resdenp. po

will convert the resdemo.rst leto resdemo.po.

More information on the rstconv utility can be found in the Programmers guide, under the chapter
about resource strings.

8.10 unitdiff program

8.10.1 Synopsis
unitdiff shows differences between 2 unit interface sections.
unitdi ff [--disable-argunents] [--disable-private] [--disable-protected]

[--help] [--lang=language] [--list] [--output=filenane] [--sparse]
filel file2

8.10.2 Description and usage

Unitdiff scans one or two Free Pascal unit source les and either lists al available identi ers, or
describes the differences in identi ers between the two units.

You can invoke unitdiff with as the only required argument ainput lename. It will then simply list
all availableidenti ers.

The regular use isto invoke unitdiff with 2 arguments:
unitdiff inputl input2

It will then show the difference in interface between the two units, or list the available identi ersin
both units. The output of unitdiff will go to standard output by default.

8.10.3 Options

unitdiff has some options, most of them optional, defaults will be used in most cases.

disable-arguments If this option is speci ed, unitdiff will not check the arguments of functions
and procedures. By default, these are checked as well.

disable-private By default, private methods of classes are checked. if this option is speci ed,
private elds or methods are not checked.

disable-protected By default, protected methods of classes are checked. if this option is speci ed,
protected and private elds or methods are not checked.

help Emit ashort help text and exit.

100

file:../prog/prog.html

CHAPTER 8. UTILITIES THAT COME WITH FREE PASCAL

lang=language Sets the language for the output le. This will mainly set the strings used for the
headers in various parts of the documentation les (by default they’re in english). Currently,
valid options are

list If this option is speci ed, only the list of available identi ers will be speci ed for the unit or
units. If only 1 unit is speci ed, this option is automatically assumed.

output=Ilename This option tells unitdiff where the output should go. If this option is not speci-
ed, the output is sent to standard output (the screen).

sparse Turnson sparse mode. In this mode, the output will not contain the types of the identi ers.
Only the names of the identi ers are written to the output. By default, also type descriptions
are written.

101

Chapter 9

Unitsthat come with Free Pascal

Here we list the units that come with the Free Pascal distribution. Since there is a difference in the
supplied units per operating system, we rst describe the generic ones, then describe those which are
operating speci C.

9.1 Standard units

Thefollowing units are standard and are meant to be ported to all supported platforms by Free Pascal.
A brief description of each unit isalso given.

crt Thisunit is similar to the unit of the same name of Turbo Pascal. It implements writing to the
console in color, moving the text cursor around and reading from the keyboard.

dos This unit provides basic routines for accessing the operating system. Thisincludes le search-
ing, environment variables access, getting the operating system version, getting and setting
the system time. It is to note that some of these routines are duplicated in functionality in the
sysuti | s unit.

getopts This unit gives you the GNU get opt s command-line arguments handling mechanism. It
also supports long options.

graph Thisunit provides basic graphics handling, with routinesto draw lines on the screen, display
texts etc. It provides the same functions as the Turbo Pascal unit.

keyboard provides basic keyboard handling routines in a platform independent way, and supports
writing custom drivers.

math This unit contains common mathematical routines (trigonometric functions, logarithms, etc.)
aswell as more complex ones (summations of arrays, normalization functions, etc.).

mmx This unit provides support for nrx extensionsin your code.

mouse provides basic mouse handling routines in a platform independent way, and supports writing
custom drivers.

objects Thisunit provides the base object for standard Turbo Pascal objects. It also implements File
and Memory stream objects, as well as sorted and non-sorted collections, and string streams.

objpas isused for Delphi compatibility; you should never load thisunit explicitly; it isautomatically
loaded if you request Delphi mode.

102

CHAPTER 9. UNITS THAT COME WITH FREE PASCAL

printer This unit provides all you need for rudimentary access to the printer using standard 1/O
routines.

sockets This gives the programmer access to sockets and TCP/IP programming.

strings Thisunit provides basic string handling routines for the pchar type, comparable to similar
routines in standard Clibraries.

system Thisunitisavailablefor all supported platforms, even though the unit name may be different
(e.g: sydlinux, sysos2). It includes among others, basic lel/O routines, memory management
routines, all compiler helper routines, and directory services routines.

sysutils is an aternative implementation of the sysutils unit of Delphi. It includes le 1/0O access
routines which takes care of le locking, date and string handling routines, |e search, date
and string conversion routines.

typinfo Provides functions to acces Run-Time Type Information, just like Delphi.

video provides basic screen handling in a platform independent way, and supports writing custom
drivers.

9.2 Under DOS

emu387 This unit provides support for the coprocessor emulator.

go32 This unit provides access to possibilities of the G032 DOs extender.

9.3 Under Windows

wincrt Thisimplements a console in a standard GUI window, contrary to thecr t unit whichisfor
the Windows console only.

Windows This unit provides access to al Win32 API calls. Effort has been taken to make sure that
it is compatible to the Delphi version of this unit, so code for Delphi is easily ported to Free
Pascal.

opengl provides access to the low-level opengl functionsin WiNDOWS.
winmouse provides access to the mouse in WINDOWS.
ole2 provides access to the OLE capabilities of WINDOWS.

winsock provides accesto the WINDOWS sockets APl Winsock.

9.4 Under Linux

linux Thisunit providesaccesstotheLINUX operating system. It providesmost leand I/O handling
routines that you may need. It implements most of the standard C library constructs that you
will nd on a Unix system. If you do a lot of disk/ e operations, the use of this unit is
recommended over the one you use under Dos.

graph Is an implementation of Borlands graph unit, which works on the Linux console. Itsim-
plementation is as complete as on the other platforms (it shares the same code). It uses the
libvga and libvgagl graphics libraries, so you need these installed for this unit to work. Also,
programs using this library need to be run as root, or setuid root, and hence are a potential
security risk.

103

CHAPTER 9. UNITS THAT COME WITH FREE PASCAL

ports Thisimplements the variousport [] constructs. These are provided for compatibility only,
and it is not recommended to use them extensively. Programs using this construct must be run
asruit or setuid root, and are a serious security risk on your system.

95 Under OS2

doscalls interface to doscalls.dll.

dive interface to dive.dll

emx provides access to the EMX extender.

pm* interface units for the program manager functions.
viocalls interface to viocalls.dll screen handling library.
moucalls interface to moucalls.dll mouse handling library.
kbdcalls interface to kbdcalls.dll keyboard handling library.

moncalls interface to moncalls.dll monitoring handling library.

9.6 Unit availability

Standard unit availability for each of the supported platformsis given in the FAQ / Knowledge base.

104

Chapter 10

Debugging your Programs

Free Pascal supports debug information for the GNU debugger gdb, or its derivatives Insight on
win32 or ddd on LINUX.

This chapter describes shortly how to use this feature. It doesn’t attempt to describe completely the
GNU debugger, however. For more information on the workings of the GNU debugger, see the gdb
users guide.

Free Pascal also suportsgpr of , the GNU pro ler, see section 10.4 for more information on pro ling.

10.1 Compiling your program with debugger support

First of all, you must be sure that the compiler is compiled with debugging support. Unfortunately,
there is no way to check this at run time, except by trying to compile a program with debugging
support.
To compile a program with debugging support, just specify the - g option on the command-line, as
follows:

fpc -g hello.pp

Thiswill generate debugging information in the executable from your program. You will notice that
the size of the executable increases substantially because of thist.

Note that the above will only generate debug information for the code that has been generated when
compiling hello.pp. This means that if you used some units (the system unit, for instance) which
were not compiled with debugging support, no debugging support will be available for the code in
these units.

There are 2 solutions for this problem.

1. Recompile all units manually with the - g option.

2. Specify the "build’ option (- B) when compiling with debugging support. Thiswill recompile
al units, and insert debugging information in each of the units.

The second option may have undesirable side effects. It may be that some units aren’t found, or
compile incorrectly due to missing conditionals, etc..

If al went well, the executable now contains the necessary information with which you can debug it
using GNU gdb.

1A good reason not to include debug information in an executable you plan to distribute.

105

CHAPTER 10. DEBUGGING YOUR PROGRAMS

10.2 Using gdb to debug your program

To use gdb to debug your program, you can start the debugger, and give it as an option the full name
of your program:

gdb hello
Or, under DOS:
gdb hel |l 0. exe

This starts the debugger, and the debugger immediately loads your program into memory, but it
does not run the program yet. Instead, you are presented with the following (more or less) message,
followed by the gdb prompt’ (gdb) ' :

GB is free software and you are wel cone to distribute copies of it

under certain conditions; type "show copying" to see the conditions.
There is absolutely no warranty for CDB; type "show warranty" for details.
GDB 4.15.1 (i486-slackware-I|inux),

Copyright 1995 Free Software Foundation, Inc...

(gdb)

To start the program you can use the r un command. You can optionally specify command-line
parameters, which will then be fed to your program, for example:

(gdb) run -option -anotheroption needed_ar gunent

If your program runs without problems, gdb will inform you of this, and return the exit code of
your program. If the exit code was zero, then the message’ Progr am exited normal |y’ is
displayed.

If something went wrong (a segmentation fault or so), gdb will stop the execution of your program,
and inform you of this with an appropriate message. You can then use the other gdb commands to
see what happened. Alternatively, you can instruct gdb to stop at a certain point in your program,
with the br eak command.

Hereisashort list of gdb commands, which you are likely to need when debugging your program:
quit Exits the debugger.
kill Stopsarunning program.
help Giveshelp on al gdb commands.
le Loadsanew program into the debugger.
directory Add anew directory to the search path for source les.
Remark: My copy of gdb needs’. to be added explicitly to the search path, otherwise it doesn't nd
the sources.

list Liststhe program sources per 10 lines. As an option you can specify aline number or function
name.

break Setsabreakpoint at a speci ed line or function

awatch Setsawatch-point for an expression. A watch-point stops execution of your program when-
ever the value of an expression is either read or written.

106

CHAPTER 10. DEBUGGING YOUR PROGRAMS

for more information, seethe gdb users’ guide, or usethe’ hel p’ functionin gdb.

The appendix F contains a sample init le for gdb, which produces good results when debugging
Free Pascal programs.

It is also possible to use RHIDE, a text-based IDE that uses gdb. There is a version of RHIDE
available that can work together with FPC.

10.3 Caveatswhen debugging with gdb

There are some peculiarities of Free Pascal which you should be aware of when using gdb. Welist
the main ones here:

1. Free Pasca generates information for GDB in uppercare letters. This is a consequence of the
fact that pascal is acaseinsensitive language. So, when referring to a variable or function, you
need to make its name all uppercase.

As an example, of you want to watch the value of aloop variable count , you should type
wat ch COUNT

Or if you want stop when a certain function (e.g MyFunct i on) iscalled, type

break MYFUNCTI ON

2. gdb does not know sets.

3. gdb doesn’'t know strings. Strings are represented in gdb asrecords with alength eld and an
array of char contaning the string.

You can also use the following user function to print strings:

def i ne pst

set $pos=&S$ar g0

set $strlen = {byte}3$pos

print {char}&$arg0.st @$strlen+1)
end

docunent pst
Print out a Pascal string
end

If youinsertitinyour gdb.ini le, you canlook at astring with thisfunction. Thereisasample
gdb.ini in appendix F.

4. Objects are dif cult to handle, mainly because gdb is oriented towards C and C++. The
workaround implemented in Free Pascal is that object methods are represented as functions,
with an extra parameter t hi s (all lowercase!) The name of this function is a concatenation
of the object type and the function name, separated by two underscore characters.

For example, the method TPoi nt . Dr awwould be converted to TPO NT___ DRAW and could
be stopped at with

break TPO NT__DRAW

5. Global overloaded functions confuse gdb because they have the same name. Thus you cannot
set abreakpoint at an overloaded function, unless you know its line number, in which case you
can set abreakpoint at the starting linenumber of the function.

107

CHAPTER 10. DEBUGGING YOUR PROGRAMS

10.4 Support for gpr of , the GNU proler

You can compile your programs with pro ling support. for this, you just have to use the compiler
switch - pg. The compiler wil insert the necessary stuff for pro ling.

When you have done this, you can run your program as you hormally would run it.
your exe

Where yourexe is the name of your executable.

When your program nishes a le called gmon.out is generated. Then you can start the pro ler to
see the output. You can better redirect the output to a le, becuase it could be quite alot:

gprof yourexe > profile.log

Hint: you can use the at option to reduce the amount of output of gprof. It will then only output
the information about the timings

For more information on the GNU proler gpr of , seeits manual.

10.5 Detecting heap memory leaks

Free Pascal has a built in mechanism to detect memory leaks. Thereis aplug-in unit for the memory
manager that analyses the memory allocation/deall ocation and which prints a memory usage report
after the program exits.

The unit that does thisis called heaptrc. If you want to useit, you should include it as the rst unit
in you uses clause. Alternatively, you can supply the - gh switch to the compiler, and it will include
the unit automatically for you.

After the program exits, you will get areport looking like this:

Mar ked menory at 0040FA50 invalid

Wong size : 128 allocated 64 freed
0x00408708
0x0040CB49
0x0040C481

Call trace for block O0x0040FA50 size 128
0x0040CB3D
0x0040C481

The output of the heaptrc unit is customizable by setting some variables.
version 2.0 only: Output can aso be customized using environment variables.
You can nd more information about the usage of the heaptrc unit in the Unit reference.

10.6 Linenumbersinrun-timeerror backtraces

Normally, when a run-time error occurs, you are presented with alist of addresses that represent the
call stack backtrace, i.e. the addresses of all procedures that were invoked when the run-time error
occurred.

Thislist is not very informative, so there exists a unit that generates the le names and line numbers
of the called procedures using the addresses of the stack backtrace. This unit is called lineinfo.

108

file:../units/units.html

CHAPTER 10. DEBUGGING YOUR PROGRAMS

You can use this unit by giving the - gl option to the compiler. The unit will be automatically
included. It is also possible to use the unit explicitly in your uses clause, but you must make sure
that you compile your program with debug info.

Here is an example program:
programtestline;
procedure gener at eerror 255;
begi n

runerror(255);
end;
procedure generat eanerror;
begi n

gener at eerr or 255;
end;
begi n

gener at eanerror;
end.

When compiled with - gl , the following output is generated:

Runtine error 255 at 0x0040BDE5

0x0040BDE5 GENERATEERROR255, line 6 of testline.pp
0x0040BDFO GENERATEANERRCOR, line 13 of testline.pp
0Ox0040BEOC main, line 17 of testline.pp

0x0040B7B1

Which is more understandabl e than the normal message. Make sure that all units you use are com-
piled with debug info, because if they are not, no line number and Iename can be found.

10.7 Combining heaptrc and lineinfo

If you combine the lineinfo and the heaptrc information, then the output of the heaptrc unit will
contain the names of the |es and line numbers of the procedures that occur in the stack backtrace.

In such a case, the output will look something like this:

Mar ked menory at 00410DAO invalid

Wong size : 128 allocated 64 freed
0x004094B8
0x0040D8F9 nmamin, line 25 of heapex. pp
0x0040D231

Call trace for block 0x00410DA0 size 128
0Ox0040D8BED nmin, line 23 of heapex. pp
0x0040D231

If lines without lename/line-number occur, this means there is a unit which has no debug info
included. (in the above case, the getmem call itself)

109

Chapter 11

CGl programming in Free Pascal

In these days of heavy WWW traf ¢ on the Internet, CGI scripts have become an important topic in
computer programming. While CGI programming can be done with almost any tool you wish, most
languages aren’t designed for it. Perl may be a notable exception, but perl is an interpreted language,
the executableis quite big, and hence puts a big load on the server machine.

Because of its simple, almost intuitive, string handling and its easy syntax, Pascal is very well suited
for CGI programming. Pascal allows you to quickly produce some results, while giving you all the
tools you need for more complex programming. The basic RTL routines in principle are enough to
get the job done, but you can create, with relatively little effort, some units which can be used as a
base for more complex CGI programming.

That's why, in this chapter, we will discuss the basics of CGI in Free Pascal. In the subsequent, we
will assume that the server for which the programs are created, are based upon the NCSA ht t pd
WWW server, as the examples will be based upon the NCSA method of CGI programming®. They
have been tested with the apache server on LINUX, and the xitami server on WINDOWS NT.

The two example programs in this chapter have been tested on the command line and worked, under
the condition that no spaces were present in the name and value pairs provided to them.

Thereishowever, afaster and generally better uncgi unit available, you can nd it on the contributed
units page of the Free Pascal web site. It uses techniques discussed here, but in a generally more
ef cient way, and it also provides some extra functionality, not discussed here.

11.1 Getting your data

Your CGI program must react on data the user has lled in on the form which your web-server gave
him. The Web server takes the response on the form, and feeds it to the CGI script.

There are essentially two ways of feeding the data to the CGI script. We will discuss both.

11.1.1 Data coming through standard input.

The rst method of getting your data is through standard input. This method is invoked when the
form uses a form submission method of POST. The web browser sets three environment variables
REQUEST _METHOD, CONTENT _TYPE and CONTENT _LENGTH. It feeds then the results of the
different eldsthrough standard input to the CGI script. All the Pascal program hasto dois:

e Check the value of the REQUEST _METHOD environment variable. The get env function will

1... and itsthe only WWW-server | have to my disposition at the moment.

110

CHAPTER 11. CGlI PROGRAMMING IN FREE PASCAL

retrieve this value this for you.
e Check the value of the CONTENT _TYPE environment variable.

e Read CONTENT _LENGTH characters from standard input. r ead (c) with ¢ of typechar
will take care of that.

if you know that the request method will aways be POST, and the CONTENT_TYPE will be correct,
then you can skip the rst two steps. The third step can be done easier: read characters until you
reach the end-of- le marker of standard input.

The following example shows how this can be achieved:
program cgi _post;
uses dos;
const max_data = 1000;
type datarec = record
nane, val ue : string;
end;
var data : array[l..nax_data] of datarec;
i,nrdata : |ongint;

¢ : char;
literal,anane : bool ean;

begi n

writeln (' Content-type: text/htm’);

writeln;

i f getenv(’ REQUEST METHOD) <>’ POST' then
begin

witeln (' This script should be referenced with a METHOD of POST');
wite ('If you don’’t understand this, see this ');
wite ("< A HREF="http://ww. ncsa. ui uc. edu/ SDE Sof t are/ Mosai ¢’) ;
witeln ('/Docs/fill-out-forns/overview htm ">forns overvi ew.");
hal t (1);
end;

i f getenv(’ CONTENT_TYPE) <>’ application/x-wwformurl encoded’ then
begi n
witeln (" This script can only be used to decode formresults’);

hal t (1)
end;
nr dat a: =1;

anane: =t r ue;
whi | e not eof (input) do

begi n
literal:=fal se;
read(c);
if c="\" then
begi n
literal:=true;
read(c);
end;

111

CHAPTER 11. CGlI PROGRAMMING IN FREE PASCAL

if literal or ((c<>=") and (c<> &)) then
wi th data[nrdata] do
i f ananme then nane: =nane+c el se val ue: =val ue+c

el se
begi n
if c="& then
begi n
inc (nrdata);
anane: =true;
end
el se
anane: =f al se;
end
end;

witeln ('<Hl>Form Results :</HL>");
witeln ('You subrmitted the foll owi ng nane/value pairs :’);
witeln ('");

for i:=1 to nrdata do witeln (' ' ,data[i].name,’ = ',data[i].value);
witeln (" </U>);
end.

While this program isn't shorter than the C program provided as an example at NCSA, it doesn’t
need any other units. everythig is done using standard Pascal procedures’.

Note that this program has alimitation: the length of names and values is limited to 255 characters.
This is due to the fact that strings in Pascal have a maximal length of 255. It is of course easy to
rede nethe dat ar ec record in such away that longer values are allowed. In case you have to read
the contents of a TEXTAREA form element, this may be needed.

11.1.2 Data passed through an environment variable

If your form usesthe GET method of passing itsdata, the CGI script needsto read the QUERY_STRI NG
environment variable to get its data. Since this variable can, and probably will, be more than 255
characters long, you will not be able to use normal string methods, present in pascal. Free Pas-
cal implements the pchar type, which is a pointer to a null-terminated array of characters. And,
fortunately, Free Pascal has a strings unit, which eases the use of the pchar type.

The following example illustrates what to do in case of a method of GET
program cgi _get;
uses strings,|linux;
const max_data = 1000;
type datarec = record
nane, val ue : string;
end;
var data : array[l..nmax_data] of datarec;

i,nrdata : |ongint;
p : PChar;

2actually, this program will give faulty results, since spaces in the input are converted to plus signs by the web browser.
The program doesn’t check for this, but that is easy to change. The main concern here isto give the working principle.

112

file:../strings/strings.html

CHAPTER 11. CGlI PROGRAMMING IN FREE PASCAL

literal,anane : bool ean;

begi n

Witeln (' Content-type: text/htm’);

Witeln;

i f StrConp(Get Env(’ REQUEST_METHOD),’ POST') <>0 t hen
begi n

Witeln (' This script should be referenced with a METHOD of GET);
wite ('If you don'’t understand this, see this ");
wite ("< A HREF="http://ww. ncsa. ui uc. edu/ SDE Sof t are/ Mosai c’) ;

Witeln ('/Docs/fill-out-forns/overview htm ">fornms overvi ew.");
halt (1);
end;

p: =Get Env(’ QUERY_STRI NG) ;

nrdat a: =1;

anane: =tr ue;
while pr<>#0 do
begi n
literal:=fal se
if pr="\" then
begin
literal:=true;
inc(longint(p));
end;
if ((pr<>'=") and (p"<> &)) or literal then
with data[nrdata] do
i f aname then nane: =nane+p” el se val ue: =val ue+p”"

el se
begi n
if pr=" & then
begi n
inc (nrdata);
anane: =tr ue;
end
el se
anane: =f al se;
end;
inc(longint(p));
end;

Witeln (' <HL>Form Results :</H1>");
Witeln (' You subnmitted the followi ng name/val ue pairs :');
Witeln (7);

for i:=1to nrdata do witeln (' ', data[i].name,’ = ',data[i].value);
Witeln (");
end.

Although it may not be written in the most elegant way, this program does the same thing as the
previous one. It also suffers from the same drawback, namely the limited length of theval ue eld
of thedat ar ec.

This drawback can be remedied by rede ning dat ar ec asfollows:

type datarec = record,;
nane, val ue : pchar;
end;

113

CHAPTER 11. CGlI PROGRAMMING IN FREE PASCAL

and assigning at run time enough space to keep the contents of the value eld. This can be done with
a

get mrem (dat a[nrdat a] . val ue, needed_nunber _of bytes);
call. After that you can do a
strlcopy (data[nrdata].val ue, p, needed_nunber_of bytes);

to copy the datainto place.
You may have noticed the following unorthodox call :

i nc(longint(p));

Free Pascal doesn’t give you pointer arithmetic asin C. However, | ongi nt s and poi nt er s have
the same length (namely 4 bytes). Doing atype-cast to al ongi nt alows you to do arithmetic on
thepoi nter.

Note however, that this is a non-portable call. This may work on the 1386 processor, but not on a
ALPHA processor (where apointer is 8 byteslong). Thiswill be remedied in future releases of Free
Pascal.

11.2 Producing output

The previous section concentrated mostly on getting input from the web server. To send the reply to
the server, you don’t need to do anything special.You just print your data on standard output, and the
Web-server will intercept this, and send your output to the WWW-client waiting for it.

You can print anything you want, the only thing you must take care of isthat you supply aCont ent s-t ype
line, followed by an empty line, as follows:

Witeln (' Content-type: text/htm');
Witeln;
{ ...start output of the form.. }

And that's dl thereistoit !

11.3 I'm under Windows, what now ?

Under Windows the system of writing CGI scripts can be totally different. If you use Free Pascal
under Windows then you also should be able to do CGI programming, but the above instructions may
not work. They are known to work for the xitami server, however.

If somekind soul iswilling to write asection on CGI programming under Windows for other servers,
I'd be willing to include it here.

114

Appendix A

Alphabetical listing of command-line
options

The following is aphabetical listing of all command-line options, as generated by the compiler:

Free Pascal Conpiler version 1.9.6 [2004/12/11] for i386
Copyright (c) 1993-2004 by Florian Kl aenpfl
fusr/local/lib/fpc/1l.9.6/ppc386 [options] <inputfile> [options]

put + after a boolean switch option to enable it, - to disable it
-a the conpiler doesn't delete the generated assenbler file
- al list sourcecode lines in assenbler file
-an list node info in assenbler file
-ap use pipes instead of creating tenporary assenbler files
-ar list register allocation/release info in assenbler file
- at list tenp allocation/release info in assenbler file

-A<x> output fornat:
-Adefault wuse default assenbler
- Aas assenbl e using GNU AS
- Anasnctoff coff (Go32v2) file using Nasm
-Anasnel f el f32 (Linux) file using Nasm

- Anasm obj file using Wasm (\Wat conj
- Anasnobj obj file using Nasm
- Amasm obj file using Masm (M crosoft)
-Atasm obj file using Tasm (Borl and)
- Ael f el f32 (Linux) using internal witer
- Acof f coff (Go32v2) using internal witer
- Apecof f pecof f (Wn32) using internal witer
-b generate browser info
- bl generate | ocal symbol info
-B build all nodul es
-C<x> code generation options:
- Cc<x> set default calling convention to <x>
-CD create also dynamc library (not supported)
-Ce Conpilation with ermul ated fl oating poi nt opcodes
- Cf <x> Select fpu instruction set to use to <x>
-Cg CGenerate PIC code
- Ch<n> <n> bytes heap (between 1023 and 67107840)
-a I O checki ng
-Cn omit |inking stage

115

APPENDIX A. ALPHABETICAL LISTING OF COMMAND-LINE OPTIONS

-Co check overflow of integer operations
-C range checki ng
-CR verify object nethod call validity
- Cs<n> set stack size to <n>
- stack checking
-CX create also smartlinked library
-d<x> defines the synbol <x>
-D generate a DEF file
- Dd<x> set description to <x>
- Dv<x> set DLL version to <x>
-e<x> set path to executable
-E same as -Cn
-F<x> set file nanes and paths:
- Fc<x> sets input codepage to <x>
- FD<x> sets the directory where to search for conpiler utilities
- Fe<x> redirect error output to <x>
- FE<x> set exe/unit output path to <x>
- Fi <x> adds <x> to include path
- Fl <x> adds <x> to library path
- FL<x> uses <x> as dynam c |i nker
- Fo<x> adds <x> to object path
- Fr<x> | oad error nessage file <x>
- Fu<x> adds <x> to unit path
- FU<x> set unit output path to <x>, overrides -FE
-g gener at e debugger information
-gc generate checks for pointers
-gd use dbx
-gg use gsym
-gh use heap trace unit (for menory | eak debuggi ng)
-gl use line info unit to show nore info for backtraces
-gv generates prograns tracable with valgrind
-gw generate dwarf debugging info
- i nformation
-iD return conpiler date
-V return conpiler version
-i SO return conpiler CS
-i SP return conpil er processor
-i TO return target OS
-i TP return target processor

-l <x> adds <x> to include path

-k<x> Pass <x> to the |inker

- wite | ogo

-Mex> set | anguage node to <x>
- M pc free pascal dialect (default)
- Mobj f pc switch some Del phi 2 extensions on
- Mdel phi tries to be Del phi conpati bl e

-Mp tries to be TP/BP 7.0 conpatible

- Mypc tries to be gpc conpatible

- Mracpas tries to be conpatible to the maci ntosh pascal dialects
-n don't read the default config file

-0<x> change the name of the executable produced to <x>
-O<x> optim zations:

-Qy generate small er code

oG generate faster code (default)

116

APPENDIX A. ALPHABETICAL LISTING OF COMMAND-LINE OPTIONS

-O keep certain variables in registers

-Qu enabl e uncertain optinizations (see docs)

-0l level 1 optimzations (quick optim zations)

-2 | evel 2 optimzations (-OL + slower optinzations)
-3 I evel 3 optimzations (-2 repeatedly, max 5 tines)
- Op<x> target processor:

-Opl set target processor to 386/486
-p2 set target processor to Pentium PentiumvvX (tn
-Op3 set target processor to PPro/PlI/c6x86/K6 (tm
- pg generate profile code for gprof (defines FPC PROFILE)
-R<x> assenbl er reading style:
-Rdefault use default assenbler

-Ratt read AT&T style assenbl er
-Rintel read Intel style assenbler
-S<x> syntax options:
-S2 sanme as - Mbj fpc
- Sc supports operators like C (*=,+=/= and -=)
- Sa i ncl ude assertion code.
- Sd same as - Mlel phi
- Se<x> conpiler stops after the <x> errors (default is 1)
-Sg al | ow LABEL and GOTO
- Sh Use ansistrings
- Si support C++ styled | NLI NE
- Sl <x> set interface style to <x>

- **3Sl com COM conpatible interface (default)
- **3Sl corba CORBA conpatible interface

- Sm support macros |like C (gl obal)

- So same as -Mp

-Sp same as - Mypc

- Ss constructor name nust be init (destructor nust be done)

- St all ow static keyword in objects
-S don’t call assenbler and |inker

-sh Generate script to link on host

- st Generate script to link on target

-Sr Skip register allocation phase (use with -alr)
-T<x> Target operating system

- Tenx 0S/ 2 via EMX (includi ng EMX/ RSX ext ender)

-Tfreebsd FreeBSD
- Tgo32v2 Version 2 of DJ Delorie DOS extender
- Tl i nux Li nux
- Tnet bsd Net BSD
-Tnetware Novell Netware Mdule (clib)
-Tnetw i bc Novell Netware Mdule (libc)
- Topenbsd QpenBSD
-Tos2 OS/ 2 / eConttation
- Tsunos SunOS/ Sol ari s
-Twatcom Wat com conpati bl e DOS ext ender
- Twdosx WDOSX DOS ext ender
- Twi n32 W ndows 32 Bit
-u<x> undefines the symbol <x>

-U unit options:
-Un don’t check the unit nane
- Ur generate release unit files
-Us conpile a systemunit

117

APPENDIX A. ALPHABETICAL LISTING OF COMMAND-LINE OPTIONS

-v<x> Be verbose. <x> is a conbination of the following letters:

e : Show errors (default) d : Show debug info
w : Show war ni ngs u: Show unit info
n : Show notes t Show tried/used files
h : Show hints m : Show defined nacros
i : Show general info p : Show conpil ed procedures
| : Show |linenunbers c : Show conditionals
a . Show everything 0 Show not hi ng (except errors)
b : Show all procedure r Rhi de/ GCC conpati bility node
decl arations if an error X Executabl e info (Wn32 only)
occurs
-V wite fpcdebug.txt file with lots of debugging info
-Wex> W n32-1ike target options
- \B<x> Set | nage base to Hexadeci mal <x> val ue

WC Speci fy consol e type application
WD Use DEFFILE to export functions of DLL or EXE
WF Specify full-screen type application (OS/ 2 only)
- WG Speci fy graphic type application
WN Do not generate relocation code (necessary for debuggi ng)
VR Generate rel ocation code

- X execut abl e options:
- Xc link with the c library
-xd don’t use standard library search path (needed for cross conpile)
- XD try to link units dynam c (defines FPC_LI NK_DYNAM C)
- XP<x> prepend the binutils nanes with the prefix <x>
- Xr <x> set library search path to <x> (needed for cross conpile)
- Xs strip all synmbols from executable
- XS try to link units static (default) (defines FPC_LI NK_STATI C)
- Xt link with static libraries (-static is passed to |inker)
- XX try to link units smart (defines FPC_LI NK_SMART)
-? shows this help
-h shows this help w thout waiting

118

Appendix B

Alphabetical list of reserved words

absol ute
abstract
and
array

as

asm
assenbl er
begi n

br eak
case
cdecl

cl ass
const
constructor
conti nue
destructor
di spose
div

do
downt o

el se

end
except
exit
export
exports
ext er nal
fail

fal se

far

file
finally
for
forward
function
got o

i f

i mpl enent ati on
n

ndex
nherited
nitialization
nline
nterface
nt er r upt
S

abel
[ibrary
nod

nane

near

new

nil

not

obj ect

of

on
oper at or
or

ot herwi se

119

packed
popst ack
private
procedure
program
property
protected
public
raise
record

r epeat
sel f

set

shl

shr
stdcal |
string

t hen

to

true

try

type
uni t
until
uses

var

Vi rtual
whi | e
with

xor

Appendix C

Compiler messages

This appendix is meant to list all the compiler messages. The list of messages is generated from he
compiler source itself, and should be faitly complete. At this point, only assembler errors are not in
thelist.

C.1 General compiler messages

This section gives the compiler messages which are not fatal, but which display useful information.
The number of such messages can be controlled with the various verbosity level - v switches.

Compiler: argl Whenthe- vt switch isused, thislinetells you what compiler is used.

Compiler OS: argl When the - vd switch is used, this line tells you what the source operating
systemis.

Info: Target OS: argl When the - vd switch is used, this line tells you what the target operating
systemis.

Using executable path: argl When the - vt switch is used, this line tells you where the compiler
looks for it's binaries.

Using unit path: argl When the - vt switch is used, this line tells you where the compiler looks
for compiled units. You can set this path with the - Fu

Using include path: argl Whenthe- vt switchisused, thislinetellsyou wherethe compiler looks
for it'sinclude les(lesusedin {$l xxx} statements). You can set this path with the - |
option.

Using library path: argl Whenthe- vt switchisused, thislinetellsyou where the compiler looks
for the libraries. You can set this path with the - FI option.

Using object path: argl Whenthe - vt switch isused, thisline tells you where the compiler looks
for object lesyoulinkin (lesusedin {$L xxx} statements). You can set this path with the
- Fo option.

Info: argl Lines compiled, arg2 sec Whenthe- vi switchisused, the compiler reportsthe number
of lines compiled, and the time it took to compile them (real time, not program time).

Fatal: No memory left The compiler doesn’t have enough memory to compileyour program. There
are several remedies for this:

120

APPENDIX C. COMPILER MESSAGES

e |f you're using the build option of the compiler, try compiling the different units manu-
aly.

¢ |f you're compiling a huge program, split it up in units, and compile these separately.

o If the previous two don’t work, recompile the compiler with a bigger heap (you can use
the - Ch option for this, - Ch, (see page 5.1.4))

Info: Writing Resource String Table le; argl This message is shown when the compiler writes
the Resource String Table |e containing al the resource strings for a program.

Error: Writing Resource String Table le: argl This message is shown when the compiler en-
countered an error when writing the Resource String Table le

Info: Fatal: Prex for Fatal Errors

Info: Error: Prex for Errors

Info: Warning: Prex for Warnings

Info: Note: Prex for Notes

Info: Hint: Prex for Hints

Error: Path "argl" doesnot exist The speci ed path does not exist.

Error: Compilation aborted

C.2 Scanner messages.

This section lists the messages that the scanner emits. The scanner takes care of the lexical structure
of the pascal le, i.e. it triesto nd reserved words, strings, etc. It also takes care of directives and
conditional compiling handling.

Fatal: Unexpected end of le thistypically happensin one of the following cases :

e The source le ends beforethe nal end. statement. This happens mostly when the
begi n and end statements aren’t balanced;

e Aninclude le endsin the middle of a statement.
e A comment was not closed

Fatal: String exceedsline Thereisamissing closing’ in astring, so it occupies multiple lines.
Fatal: illegal character "argl" (arg2) Anillegal character was encountered in theinput le.

Fatal: Syntax error, "argl" expected but "arg2" found Thisindicatesthat the compiler expected
a different token than the one you typed. It can occur amost everywhere where you make a
mistake against the pascal language.

Start reading includeleargl When you provide the - vt switch, the compiler tells you when it
starts reading an included le.

Warning: Comment level argl found When the - vw switch is used, then the compiler warns you
if it nds nested comments. Nested comments are not allowed in Turbo Pascal and can be a
possible source of errors.

Note: Ignored compiler switch "argl" With - vn on, the compiler warnsif it ignores a switch

121

APPENDIX C. COMPILER MESSAGES

Warning: lllegal compiler switch "argl" Youincluded acompiler switch(i.e. {$... })which
the compiler does not recognise

Warning: Misplaced global compiler switch The compiler switch is misplaced, and should be lo-
cated at the start of the unit or program.

Error: Illegal char constant This happenswhen you specify a character with its ASCII code, asin
#96, but the number is either illegal, or out of range.

Fatal: Can't open le"argl" Free Pascal cannot nd the program or unit source leyou speci ed
on the command line.

Fatal: Can't open include le"argl" Free Pascal cannot nd the source le you speci ed in a
{$i ncl ude ..} statement.

Warning: Records eldscan bealigned to 1,2,4,8,16 or 32 bytesonly You are specifying the{ $PACKRECORDS
n} withanillega valueforn. Only 1, 2, 4, 8, 16 and 32 are valid in this case.

Warning: Enumerated can be saved in 1,2 or 4 bytesonly You are specifying the { $PACKENUM
n} withanillegal valuefor n. Only 1,2 or 4 are valid in this case.

Error: $ENDIF expected for argl arg2 dened in arg3 linearg4 Your conditional compilation state-
ments are unbalanced.

Error: Syntax error while parsing a conditional compiling expression There is an error in the
expression following the { $i f . . }, i fcorsetc compiler directives.

Error: Evaluating a conditional compiling expression Thereisan error in the expression follow-
ingthe{$i f ..}, ifcorsetc compiler directives.

Warning: Macro contentsarelimited to 255 charactersin length The contents of macros cannot
be longer than 255 characters.

Error: ENDIF without IF(N)DEF Your { $| FDEF . .} and{$ENDIF} statementsaren’t balanced.
Fatal: User dened: argl A user de ned fatal error occurred. see also the Programmers guide
Error: User dened: argl A user de ned error occurred. see also the Programmers guide
Warning: User dened: argl A user de ned warning occurred. see also the Programmers guide
Note: User dened: argl A user de ned note was encountered. see also the Programmers guide
Hint: User dened: argl A user de ned hint was encountered. see also the Programmers guide

Info: User dened: argl User dened information was encountered. see also the Programmers
guide

Error: Keyword rede ned asmacro has no effect You cannot rede ne keywords with macros.

Fatal: Macro buffer over ow whilereading or expanding a macro Your macro or it'sresult was
too long for the compiler.

Warning: Expanding of macros exceeds a depth of 16. When expanding a macro, macros have
been nested to a level of 16. The compiler will expand no further, since this may be a sign
that recursion is used.

Warning: compiler switchesaren’t supported in // styled comments Compiler switches should be
in normal pascal style comments.

Handling switch "argl" When you set debugging info on (- vd) the compiler tells you when it is
evaluating conditional compile statements.

122

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

APPENDIX C. COMPILER MESSAGES

ENDIF argl found When you turn on conditional messages(- vc), the compiler tells you where it
encounters conditional statements.

IFDEF argl found, arg2 When you turn on conditional messages(- vc), the compiler tells you
where it encounters conditional statements.

IFOPT argl found, arg2 When you turn on conditional messages(- vc), the compiler tells you
where it encounters conditional statements.

IF argl found, arg2 When you turn on conditional messages(- vc), the compiler tells you where it
encounters conditional statements.

IFNDEF argl found, arg2 When you turn on conditional messages(- vc), the compiler tells you
where it encounters conditional statements.

EL SE argl found, arg2 When you turn on conditional messages(- vc), the compiler tellsyou where
it encounters conditional statements.

Skipping until... When you turn on conditional messages(- vc), the compiler tells you where it
encounters conditional statements, and whether it is skipping or compiling parts.

Info: Press<return>to continue When the - vi switch is used, the compiler stops compilation
and waitsfor the Ent er key to be pressed when it encountersa{ $STOP} directive.

Warning: Unsupported switch "argl® When warnings are turned on (- vw) the compiler warns
you about unsupported switches. This meansthat the switch is used in Delphi or Turbo Pascal,
but not in Free Pascal

Warning: lllegal compiler directive”argl" Whenwaringsareturned on (- vw) the compiler warns
you about unrecognised switches. For alist of recognised switches, Programmers guide

Back in argl When you use (- vt) the compiler tells you when it has nished reading an include
le.

Warning: Unsupported application type: "argl" You get thiswarning, ff you specify an unknown
application type with the directive { SAPPTYPE}

Warning: APPTYPE isnot supported by thetarget OS The{ $SAPPTYPE} directiveissupported
by certain operating systems only.

Warning: DESCRIPTION isnot supported by thetarget OS The{ $DESCRI PTI O\} directive
is not supported on this target OS

Note: VERSION isnot supported by target OS The { $VERSI ON} directive is not supported on
thistarget OS

Note: VERSION only for exesor DLLs The { $VERSI O\} directive is only used for executable
or DLL sources.

Warning: Wrong format for VERSION directive"argl" The { $VERSI ON} directive format is
maj orversion.minorversion where majorversion and minorversion are words.

Error: lllegal assembler style speci ed "argl” When you specify an assembler mode with the
{ $ASMMODE xxx} the compiler didn’t recognize the mode you speci ed.

Warning: ASM reader switch isnot possibleinside asm statement, " argl" will be effective only for next
It is not possible to switch from one assembler reader to another inside an assmebler block.
The new reader will be used for next assembler statements only.

Error: Wrong switch toggle, use ON/OFF or +/- You need to use ON or OFF or a+ or - to toggle
the switch

123

file:../prog/prog.html

APPENDIX C. COMPILER MESSAGES

Error: Resource lesarenot supported for thistarget The target you are compiling for doesn’t
support resource les.

Warning: Include environment " argl" not found in environment Theincluded environment vari-
able can’t be found in the environment, it will be replaced by an empty string instead.

Error: Illegal valuefor FPU register limit Validvauesfor thisdirectiveare0..8 and NORMAL/DE-
FAULT

Warning: Only oneresource leissupported for thistarget Thetarget you are compiling for sup-
ports only one resource le. The rst resource lefound is used, the others are discarded.

Warning: Macro support has been turned off A macro declaration has been found, but macro
support is currently off, so the declaration will be ignored. To turn macro support on com-
pile with -Sm on the commandline or add { SMACRO ON} in the source

Error: lllegal interface type speci ed. Validsare COM, CORBA or DEFAULT. Theinterfacetype
that was speci ed is not supported

Warning: APPID isonly supported for PaAlmOS The { $APPI D} directive is only supported for
the PalmOS target.

Warning: APPNAME isonly supported for PalmOS The { SAPPNANE} directive is only sup-
ported for the PAlmOS target.

Error: Constant strings can’t be longer than 255 chars A single string constant can contain at
most 255 chars. Try splitting up the string in multiple smaller parts and concatenate them
with a + operator.

Fatal: Includinginclude lesexceedsadepth of 16. When including include les the les have
been nested to alevel of 16. The compiler will expand no further, since this may be a sign that
recursion is used.

Fatal: Too many levelsof PUSH A maximum of 20 levels is allowed. This error occur only in
mode MacPas.

Error: A POP without a preceding PUSH This error occur only in mode MacPas.

Error: Macro or compiletimevariable" argl" does not have any value Thusthe conditional com-
pile time expression cannot be evaluated.

Error: Wrong switch toggle, use ON/OFF/DEFAULT or +/-/* You need to use ON or OFF or
DEFAULT or a+ or - or * to toggle the switch

Error: Mode switch "argl" not allowed here A mode switch has already been encountered, or, in
case of option -Mmacpas, a mode switch occur after UNIT.

Error: Compiletimevariable"argl" isnot dened. Thus the conditional compile time expres-
sion cannot be evaluated.

C.3 Parser messages

This section lists all parser messages. The parser takes care of the semantics of you language, i.e. it
determines if your pascal constructs are correct.

Error: Parser - Syntax Error An error against the Turbo Pascal language was encountered. This
happens typically when an illegal character isfound in the sources le.

124

APPENDIX C. COMPILER MESSAGES

Error: INTERRUPT procedure can’t be nested An| NTERRUPT procedure must be global.
Warning: Proceduretype"argl" ignored The speci ed isignored by FPC programs.

Error: Not all declarationsof "argl" aredeclared with OVERLOAD When you want to use over-
loading using the OVERL QAD directive, then all declarations need to have OVERL QAD speci-
ed.

Error: Duplicate exported function name"argl" Exported function namesinsideaspeci cDLL
must all be different

Error: Duplicate exported function index argl Exported function names inside a speci ¢ DLL
must all be different

Error: Invalid index for exported function DLL functionindex must beintherange 1. . $FFFF
Warning: Relocatable DLL or executable argl debug info does not work, disabled.

Warning: To allow debugging for win32 code you need to disable relocation with -WN option Stabs
infoiswrong for relocatable DLL or EXES use -WN if you want to debug win32 executables.

Error: Constructor name must be INIT You aredeclaring an object constructor with anamewhich
isnoti ni t, andthe- Ss switchisin effect. Seethe - Ss switch (- Ss, (see page 5.1.5)).

Error: Destructor name must be DONE You aredeclaring an object destructor with anamewhich
isnot done, and the - Ss switch isin effect. Seethe - Ss switch (- Ss, (see page 5.1.5)).

Error: Proceduretype INLINE not supported You tried to compile a program with C++ style
inlining, and forgot to specify the - Si option (- Si , (see page 5.1.5)). The compiler doesn’'t
support C++ styled inlining by default.

Warning: Constructor should be public Constructors must be in the 'public’ part of an object
(class) declaration.

Warning: Destructor should be public Destructors must beinthe’public’ part of an object (class)
declaration.

Note: Class should have one destructor only You can declare only one destructor for a class.

Error: Local classdenitionsarenot allowed Classes must be de ned globally. They cannot be
de ned inside a procedure or function

Fatal: Anonym classdenitionsarenot allowed Aninvalid object (class) declaration was encoun-
tered, i.e. an object or class without methods that isn’t derived from another object or class.
For example:

Type o = obj ect
a : longint;
end;

will trigger this error.

Note: Theobject "argl” hasnoVMT This is a note indicating that the declared object has no
virtual method table.

Error: Illegal parameter list You are caling afunction with parameters that are of adifferent type
than the declared parameters of the function.

Error: Wrong number of parametersspeci ed Thereisan error in the parameter list of the func-
tion or procedure, the number of parametersis not correct.

125

APPENDIX C. COMPILER MESSAGES

Error: overloaded identi er "argl" isn’'t afunction Thecompiler encountered asymbol withthe
same name as an overloaded function, but it is not a function it can overload.

Error: overloaded functions have the same parameter list You'redeclaring overloaded functions,
but with the same parameter list. Overloaded function must have at |east 1 different parameter
in their declaration.

Error: function header doesn’t match the forward declaration "argl" You declared a function
with same parameters but different result type or function modi ers.

Error: function header "argl" doesn’t match forward : var name changesarg2 => arg3 Youde-
clared the functioninthei nt er f ace part, or with thef or war d directive, but de neit with
adifferent parameter list.

Note: Valuesin enumeration types haveto be ascending Free Pascal alowsenumeration construc-
tionsasin C. Given the following declaration two declarations:

type a
type a

(A_ ,A ,AE=6, UAS 200)
(AAAB ;

The second declaration would produce an error. A_UAS needs to have a value higher than
A E/i.e atleast7.

Error: With can not be used for variablesin a different segment With stores a variable locally
on the stack, but thisis not possible if the variable belongs to another segment.

Error: function nesting > 31 You can nest function de nitions only 31 times.
Error: range check error while evaluating constants The constantsare out of their allowed range.

Warning: range check error while evaluating constants The constants are out of their allowed
range.

Error: duplicate caselabel You are specifying the same label 2 timesin acase statement.

Error: Upper bound of caserangeislessthan lower bound The upper bound of acase label is
less than the lower bound and thisis useless

Error: typed constants of classesare not allowed You cannot declare a constant of type class or
object.

Error: functions variables of overloaded functionsarenot allowed You are trying to assign an
overloaded function to a procedural variable. Thisis not allowed

Error: string length must be avaluefrom 1to 255 Thelength of ashortstring in Pascal islimited
to 255 characters. You are trying to declare a string with length lower than 1 or greater than
255

Warning: use extended syntax of NEW and DI SPOSE for instances of objects If you haveapointer
a to aclass type, then the statement new(a) will not initialize the class (i.e. the constructor
isn’t called), although space will be allocated. you should issuethenew(a, i ni t) statement.
Thiswill allocate space, and call the constructor of the object

Warning: use of NEW or DISPOSE for untyped pointersis meaningless

Error: use of NEW or DISPOSE isnot possible for untyped pointers You cannot use new(p)
or di spose(p) if p isanuntyped pointer because no sizeis associated to an untyped pointer.
Accepted for compatibility int p and del phi modes.

126

APPENDIX C. COMPILER MESSAGES

Error: classidenti er expected Thishappenswhen the compiler scansaprocedure declaration that
contains a dot, i.e., a object or class method, but the type in front of the dot is not a known

type.
Error: typeidenti er not allowed here You cannot use atype inside an expression.

Error: method identi er expected This identi er is not a method. This happens when the com-
piler scans a procedure declaration that contains a dot, i.e., a object or class method, but the
procedure name is not a procedure of this type.

Error: function header doesn’t match any method of thisclass"argl" Thisidenti erisnot amethod.
This happens when the compiler scans a procedure declaration that contains adot, i.e., a object
or class method, but the procedure name is not a procedure of this type.

procedure/function argl When using the - vd switch, the compiler tellsyou when it starts process-
ing a procedure or function implementation.

Error: lllegal oating point constant The compiler expects a oating point expression, and gets
something else.

Error: FAIL can beused in constructorsonly You are using the f ai | keyword outside a con-
structor method.

Error: Destructorscan’t have parameters You are declaring a destructor with a parameter list.
Destructor methods cannot have parameters.

Error: Only class methods can bereferred with classreferences This error occurs in a situation
like the following:

Type :
Tclass = O ass of Tobject;

Var C : Td ass;
begin
Cfree
Fr ee isnot a class method and hence cannot be called with a class reference.

Error: Only class methods can be accessed in class methods Thisisrelated to the previous error.
You cannot call amethod of an object from ainside a class method. The following code would
produce this error:

cl ass procedure tobject.x;

begi n
free

Because free is anormal method of aclassit cannot be called from a class method.

Error: Constant and CASE typesdo not match One of the labels is hot of the same type as the
case variable.

Error: The symbol can’'t be exported from alibrary You can only export procedures and func-
tions when you write alibrary. You cannot export variables or constants.

127

APPENDIX C. COMPILER MESSAGES

Warning: An inherited method ishidden by "argl" A method that is declared vi rt ual in a
parent class, should be overridden in the descendent class with the over ri de directive. If
you don't specify the overri de directive, you will hide the parent method; you will not
override it.

Error: Thereisno method in an ancestor classto beoverridden: "argl" Youaretryingtooverri de
avirtual method of a parent class that does not exist.

Error: No member isprovided to access property You speci ed no read directive for a prop-
erty.

Warning: Stored prorperty directiveisnot yet implemented Thest or ed directiveisnot yetim-
plemented

Error: lllegal symbol for property access Thereisan error inther ead or wri t e directives for
an array property. When you declare an array property, you can only accessit with procedures
and functions. The following code woud cause such an error.

t myobj ect = cl ass
i : integer;
property x [i : integer]: integer read | wite i;

Error: Cannot access a protected eld of an object here Fieldsthat aredeclaredinapr ot ect ed
section of an object or class declaration cannot be accessed outside the module wher the object
is de ned, or outside descendent object methods.

Error: Cannot accessa private eld of an object here Fieldsthat aredeclaredinapri vat e sec-
tion of an object or class declaration cannot be accessed outside the module where the classis
de ned.

Error: overridden methods must havethe samereturn type: "arg2" isoverriden by "argl" which hasanother return t
If you declare overridden methods in a class de nition, they must have the same return type.

Error: EXPORT declared functionscan’t be nested You cannot declare a function or procedure
within a function or procedure that was declared as an export procedure.

Error: methodscan’'t be EXPORTed You cannot declare a procedure that is a method for an ob-
ject asexport ed.

Error: call by var parameters have to match exactly: Got "argl" expected "arg2" When call-
ing a function declared with var parameters, the variables in the function call must be of
exactly the same type. There is no automatic type conversion.

Error: Classisn’t a parent class of the current class When calling inherited methods, you aretry-
ing to call a method of a non-related class. You can only call an inherited method of a parent
class.

Error: SELF isonly allowed in methods You aretrying to usethesel f parameter outside an ob-
ject’s method. Only methods get passed the sel f parameters.

Error: methods can beonly in other methods called direct with typeidenti er of theclass A con-
struction like sonet ype. sonenet hod isonly alowed in amethod.

Error: lllegal useof ':’ You are using the format : (colon) 2 times on an expression that is not a
real expression.

Error: range check error in set constructor or duplicate set element The declaration of aset con-
tains an error. Either one of the elements is outside the range of the set type, either two of the
elements are in fact the same.

128

APPENDIX C. COMPILER MESSAGES

Error: Pointer to object expected You speci ed anillegal typein a new statement. The extended
syntax of new needs an object as a parameter.

Error: Expression must be constructor call When using the extended syntax of new, you must
specify the constructor method of the object you are trying to create. The procedure you
speci ed is not a constructor.

Error: Expression must be destructor call When using the extended syntax of di spose, you
must specify the destructor method of the object you are trying to dispose of. The procedure
you speci ed is not a destructor.

Error: lllegal order of record elements When declaring a constant record, you speci ed the elds
in the wrong order.

Error: Expression type must beclassor record type A wi t h statement needs an argument that
is of thetyperecord or cl ass. You areusing wi t h on an expression that is not of this

type.

Error: Procedurescan’t return avalue In Free Pascal, you can specify areturn value for a func-
tion when using the exi t statement. This error occurs when you try to do this with a proce-
dure. Procedures cannot return avalue.

Error: constructorsand destructors must be methods You're declaring aprocedure as destructor
or constructor, when the procedure isn’t a class method.

Error: Operator isnot overloaded You'retrying to use an overloaded operator when it isnot over-
loaded for thistype.

Error: Impossibleto overload assignment for equal types You can not overload assignment for
types that the compiler considers as equal.

Error: Impossible operator overload The combination of operator, arguments and return type are
incompatible.

Error: Reraiseisn’'t possiblethere You are trying to raise an exception where it is not alowed.
You can only raise exceptionsin an except block.

Error: The extended syntax of new or disposeisn’t allowed for a class You cannot generate an
instance of a class with the extended syntax of new. The constructor must be used for that. For
the same reason, you cannot call di spose to de-allocate an instance of a class, the destructor
must be used for that.

Error: Procedure overloading is switched off When using the- So switch, procedure overloading
is switched off. Turbo Pascal does not support function overloading.

Error: It isnot possibleto overload this operator (overload = instead) You aretrying to overload
an operator which cannot be overloaded. The following operators can be overloaded :

Error: Comparative operator must return a boolean value When overloading the = operator, the
function must return a boolean value.

Error: Only virtual methods can be abstract You are declaring a method as abstract, when it is
not declared to be virtual.

Fatal: Use of unsupported feature! You're trying to force the compiler into doing something it
cannot do yet.

129

APPENDIX C. COMPILER MESSAGES

Error: The mix of different kind of objects (class, object, interface, etc) isn’t allowed You can-
not derive obj ect s, cl asses, cppcl asses and i nt er f aces interttwined . E.g. a
class cannot have an object as parent and vice versa.

Warning: Unknown proceduredirective had to beignored: "argl" The proceduredirectiveyou
speci ed is unknown.

Error: absolute can only be associated to onevariable You cannot specify more than one vari-
able before the absol ut e directive. Thus, the following construct will provide this error:

Var Z : Longint;
X, Y : Longint absolute Z

absolute can only be associated a var or const The address of a absol ut e directive can only
point to avariable or atyped constant. Therefore, the following code will produce this error:

Procedure X;

var p : longint absolute x;

Error: absolute can only be associated with avar or const The address of a absol ut e direc-
tive can only point to a variable or constant. Therefore, the following code will produce this
error:

Procedure X;

var p : longint absolute x;

Error: Only onevariable can beinitialized You cannot specify more than one variable with aini-
tial value in Delphi mode.

Error: Abstract methods shouldn’t have any de nition (with function body) Abstract methods can
only be declared, you cannot implement them. They should be overridden by a descendant
class.

Error: Thisoverloaded function can’t be local (must be exported) You arede ning aoverloaded
function in the implementation part of a unit, but there is no corresponding declaration in the
interface part of the unit.

Warning: Virtual methods are used without a constructor in "argl" If you declareobjectsor classes
that contain virtual methods, you need to have a constructor and destructor to initialize them.
The compiler encountered an object or class with virtual methods that doesn’t have a construc-
tor/destructor pair.

Macrodened: argl When - vc isused, the compiler tells you when it de nes macros.
Macroundened: argl When - vc isused, the compiler tells you when it unde nes macros.
Macro argl set toarg2 When - vc is used, the compiler tells you what values macros get.

Info: Compiling argl When you turn on information messages (- vi), the compiler tells you what
unitsit is recompiling.

Parsing interface of unit argl This tells you that the reading of the interface of the current unit
starts

130

APPENDIX C. COMPILER MESSAGES

Parsing implementation of argl Thistells you that the code reading of the implementation of the
current unit, library or program starts

Compiling argl for the second time When you request debug messages (- vd) the compiler tells
you what units it recompiles for the second time.

Error: No property found to override You want to overrride a property of a parent class, when
thereis, in fact, no such property in the parent class.

Error: Only one default property isallowed You speci ed aproperty as Def aul t, but the class
already has a default property, and a class can have only one default property.

Error: Thedefault property must bean array property Only array properties of classes can be
made def aul t properties.

Error: Virtual constructorsare only supported in class object model You cannot havevirtual con-
structorsin objects. You can only have them in classes.

Error: No default property available You aretrying to access adefault property of aclass, but this
class (or one of it's ancestors) doesn’t have a default property.

Error: Theclasscan't have a published section, use the $M+ switch If youwant apubl i shed
section in aclass de nition, you must usethe { $M+} switch, whch turns on generation of type
information.

Error: Forward declaration of class" argl" must beresolved hereto use the class as ancestor
To be able to use an object as an ancestor object, it must be dened rst. This error occursin
the following situation:

Type ParentC as = d ass;
Chi | dCl ass = O ass(Parent d ass)
end;

Where Par ent Cl ass isdeclared but not de ned.

Error: Local operatorsnot supported You cannot overload localy, i.e. inside procedures or func-
tion de nitions.

Error: Proceduredirective" argl" not allowed in interface section Thisproceduredirectiveisnot
allowed inthei nt er f ace section of aunit. You can only useitinthei npl enent ati on
section.

Error: Proceduredirective"argl" not allowed in implementation section Thisproceduredirec-
tive is not dened in the i npl ement at i on section of a unit. You can only use it in the
i nterface section.

Error: Proceduredirective"argl" not allowed in procvar declaration This procedure directive
cannot be part of a procedural or function type declaration.

Error: Function isalready declared Public/Forward "argl" You will get this error if afunction
isdened as forward twice. Or it is once in thei nterface section, and once as a
f or war d declarationinthei npl nment at i on section.

Error: Can’t use both EXPORT and EXTERNAL These two procedure directives are mutually
exclusive

Warning: "argl" not yet supported inside inline procedure/function Inlineproceduresdon’t sup-
port this declaration.

131

APPENDIX C. COMPILER MESSAGES

Warning: Inlining disabled Inlining of proceduresis disabled.

Info: Writing Browser log argl When information messages are on, the compiler warns you when
it writes the browser log (generated with the { $Y+ } switch).

Hint: may be pointer dereferenceis missing The compiler thinks that a pointer may need a deref-
erence.

Fatal: Selected assembler reader not supported The selected assembler reader (with { SASMVIODE
xxx} isnot supported. The compiler can be compiled with or without support for a particular
assembler reader.

Error: Proceduredirective"argl" hascon ictswith other directives You speci ed a procedure
directive that con icts with other directives. for instance cdecl and pascal are mutually
exclusive.

Error: Calling convention doesn’t match forward This error happens when you declare a func-
tion or procedure with e.g. cdecl ; but omit this directive in the implementation, or vice
versa. The calling convention is part of the function declaration, and must be repeated in the
function de nition.

Error: Property can’t have a default value Set properties or indexed properties cannot have a de-
fault value.

Error: Thedefault value of a property must be constant Thevaueof adef aul t declared prop-
erty must be known at compile time. The value you speci ed is only known at run time. This
happens .e.g. if you specify a variable name as a default value.

Error: Symbol can’t be published, can be only a class Only classtypevariablescanbeinapubl i
section of aclassif they are not declared as a property.

Error: That kind of property can’t be published Propertiesin apubl i shed section cannot be
array properties. they must be moved to public sections. Propertiesin apubl i shed section
must be an ordinal type, areal type, strings or sets.

Error: Animport nameisrequired Some targets need a name for the imported procedure or a
cdecl speci er

Error: Division by zero Thereisadivsion by zero encounted

Error: Invalid oating point operation An operation on two rea type values produced an over-
ow or adivision by zero.

Error: Upper bound of rangeislessthan lower bound The upper bound of aan array declaration
isless than the lower bound and this is not possible

Warning: string " argl" islonger than "arg2" The size of the constant string is larger than the
size you speci ed in string type de nition

Error: string length islarger than array of char length The size of the constant string is larger
than the size you speci ed in the array[x..y] of char de nition

Error: Illegal expression after message directive Free Pascal supports only integer or string val-
ues as message constants

Error: Message handlers can take only one call by ref. parameter A method declared with the
nmessage-directive as message handler can take only one parameter which must be declared
as call by reference Parameters are declared as call by reference using the var -directive

Error: Duplicate message label: "argl" A label for amessageis used twice in one object/class

132

shed

APPENDIX C. COMPILER MESSAGES

Error: Self can only be an explicit parameter in methods which are message handlers The self
parameter can only be passed explicitly to a method which is declared as message handler.

Error: Threadvarscan be only static or global Threadvars must be static or global, you can’t de-
clare athread local to a procedure. Local variables are always local to athread, because every
thread hasit’s own stack and local variables are stored on the stack

Fatal: Direct assembler not supported for binary output format You can't use direct assembler
when using a binary writer, choose an other outputformat or use an other assembler reader

Warning: Don’t load OBJPAS unit manually, use {modeobj fpc}or{mode delphi} instead Youare
trying to load the ObjPas unit manually from a uses clause. Thisis not agood idea. Use the
{$node obj f pc} or{$node del phi} directiveswhich load the unit automatically

Error: OVERRIDE can't beused in objects Overrideisnot supported for objects, usevi r t ual
instead to override a method of a parent object

Error: Datatypeswhich requireinitialization/ nalization can’'t be used in variant records Some
datatype (e.g. ansi st ri ng) needsinitialization/ nalization code which isimplicitly gener-
ated by the compiler. Such datatypes can't be used in the variant part of arecord.

Error: Resourcestrings can be only static or global Resourcestring can not bedeclared local, only
global or using the static directive.

Error: Exit with argument can’t be used here an exit statement with an argument for the return
value can't be used here, thiscan happeneg. intry. . except ortry..finally blocks

Error: Thetype of the storage symbol must be boolean |If you specify astorage symbol inaprop-
erty declaration, it must be of the type boolean

Error: Thissymbol isn’t allowed as storage symbol You can’t use this type of symbol as storage
speci er in property declaration. You can use only methods with the result type boolean,
boolean class elds or boolean constants

Error: Only classwhich are compiled in $M+ mode can be published Inthe published section of
aclasscan beonly classas eldsused which are compiledin { $M+} or which are derived from
such aclass. Normally such aclass should be derived from TPersitent

Error: Procedure directive expected When declaring a procedure in a const block you used a ;
after the procedure declaration after which a procedure directive must follow. Correct declara-
tions are:

const
p : procedure;stdcall=nil
p : procedure stdcall =nil

Error: Thevaluefor a property index must be of an ordinal type The value you use to index a
property must be of an ordinal type, for example an integer or enumerated type.

Error: Procedure nameto short to be exported The length of the procedure/function name must
be at least 2 characters long. Thisis because of a bug in dlltool which doesn’t parse the .def
le correct with a name of length 1.

Error: No DEFFILE entry can be generated for unit global vars

Error: Compilewithout -WD option You need to compile this le without the -WD switch on the
commandline

133

APPENDIX C. COMPILER MESSAGES

Fatal: You need ObjFpc (-S2) or Delphi (-Sd) mode to compile this module You need to use{ $mode
objfpc} or {$mode delphi} to compile this le. Or use the equivalent commandline switches
-S2 or -Sd.

Error: Can’t export with index under argl Exporting of functions or procedures with a speci ed
index is not supported on this target.

Error: Exporting of variablesis not supported under argl Exporting of variablesisnot supported
on this target.

Error: Improper GUID syntax

Warning: Procedure named "argl" not found that is suitable for implementing the arg2.arg3

Error: interfaceidenti er expected This happens when the compiler scans acl ass declaration
that containsi nt er f ace function name mapping code like this:

type
TMyObj ect = cl ass(TObj ect, |Dispatch)
function | Unknown. Queryl nterface=MyQueryl nterface;

andthei nt er f ace before the dot not listed in the inheritance list.

Error: Type"argl" can't beused asarray index type Typeslikeqwor d ori nt 64 aren’t allowed
as array index type

Error: Con- and destructorsaren’t allowed in interfaces Constructor and destructor declarations
aren’'t allowed in interface In the most cases the method Quer yI nt er f ace of | Unknown
can be used to create a new interface.

Error: Access speci erscan’t beused in INTERFACES Theaccessspeci ers publ i ¢, pri vat e,
pr ot ect ed and pusbl i shed can't be used in interfaces because all methods of an inter-
faces must be public.

Error: Aninterfacecan’'t contain elds Declarationsof eldsaren’t alowed in interfaces. Anin-
terface can contain only methods

Error: Can’'t declarelocal procedure asEXTERNAL Declaring local procedures as external is
not possible. Local procedures get hidden parameters that will make the chance of errors very
high

Warning: Some elds coming before" argl" weren’t initialized In Delphi mode, not al elds of
atyped constant record have to beinitialized, but the compiler warns you when it detects such
situations.

Error: Some elds coming before™ argl" weren't initialized 1nall syntax modesbut Delphi mode,
you can’t leave some elds uninitialized in the middle of atyped constant record

Warning: Some elds coming after "argl" weren’t initialized You can leave some €elds at the
end of atype constant record uninitialized (the compiler will initialize them to zero automati-
caly). This may be the cause of subtle problems.

Error: VarArgsdirective without CDecl and External Thevarargsdirective can only be used with
procedures or functions that are declared with cdecl and ext er nal directives. The varargs
directive is only meant to provide a compatible interface to C functions like printf.

134

APPENDIX C. COMPILER MESSAGES

Error: Self must be a normal (call-by-value) parameter You can’t declare self as a const or var
parameter, it must always be a call-by-value parameter

Error: Interface" argl" hasnointerfaceidenti cation When you want to assign an interface to
a constant, then the interface must have a GUID value set.

Error: Unknown class eld or method identi er "argl" Propertiesmust refer toa eld or method
inthe same class.

Warning: Overriding calling convention "argl" with "arg2" Therearetwo directivesinthepro-
cedure declaration that specify acalling convention. Only the last directive will be used

Error: Typed constants of the type " procedure of object" can only beinitialized with NIL You
can't assign the address of amethod to atyped constant which hasa’ procedure of object’ type,
because such a constant requires two addresses: that of the method (which isknown at compile
time) and that of the object or classinstance it operates on (which can not be known at compile
time).

Error: Default value can only be assigned to one parameter
Error: Default parameter required for "argl”

Warning: Use of unsupported feature! You're trying to force the compiler into doing something
it cannot do yet.

Hint: C arraysarepassed by reference Any array passed to a C functions is passed by a pointer
(i.e. by reference).

Error: C array of const must be thelast argument You can not add any other argument after an
array of const forcdecl functions, asthe size pushed on stack for thisargument is not
known.

Hint: Type"argl" redenition Thisisan indicator that a previously declared type is being rede-
ned as something else. This may, or may not be, a cause for errors.

Warning: cdecl’ared functions have no high parameter Functions declared with cdecl modi er
do not pass an extraimplicit parameter.

Warning: cdecl’ared functions do not support open strings Openstring isnot supported for cdecl’ ared
functions.

Error: Cannot initialize variables declared asthreadvar Variables declared as threadvar can not
be initialized with a default value. The variables will always be lled with zero at the start of
anew thread.

Error: Message directiveisonly allowed in Classes The message directive is only supported for
Classtypes.

Error: Procedure or Function expected A class method can only be speci ed for procedures and
functions.

Warning: Calling convention directiveignored: "argl" Some calling conventions are supported
only by certain CPUs. |.e. most non-i386 ports support only the standard ABI calling conven-
tion of the CPU.

Error: REINTRODUCE can’t beused in objects r ei nt r oduce isnot supported for objects.

Error: Each argument must haveit’sown location If locations for arguments are speci ed ex-
plicitly as it is reguired by some syscall conventions, each argument must have it's only lo-
cation, thingslike pr ocedure p(i,j : Jlongint 'rl1"); aren'talowed

135

APPENDIX C. COMPILER MESSAGES

Error: Each argument must have an explicit location If one argument has an explicit argument
location, all arguments of a procedure must have one.

Error: Unknown argument location The location speci ed for an argument isn’'t recognized by
the compiler

Error: 32 Bit-Integer or pointer variable expected The libbase for MorphOS/AmigaOS can be
giveonly asl| ongi nt, dwor d or any pointer variable.

Error: Goto statementsaren’t allowed between different procedures It isn’t alowed to use the
got o statements referencing labels outside the current procedure. The following example
shows the problem:

procedure pl;
| abel
I 1;

procedure p2;
begi n

goto I1; // This goto ISN T all owed
end;

begi n

p2
| 1:
end;

Fatal: Proceduretoo complex, it requirestoo much registers Your procedure body istoo long for
the compiler. You should split the procedure into multiple smaller procedures.

Error: lllegal expression This can occur under many circumstances. Mostly when trying to evalu-
ate constant expressions.

Error: Invalid integer expression You made an expression which isn't an integer, and the compiler
expects the result to be an integer.

Error: lllegal quali er One of the following is happening :

e You'retrying to accessa eld of avariable that is not a record.
e You'reindexing avariable that is not an array.
e You're dereferencing avariable that is not a pointer.

Error: High rangelimit <low rangelimit You are declaring a subrange, and the lower limit is
higher than the high limit of the range.

Error: Exit's parameter must be the name of the procedureit isused in Nonlocal exitisnot al-
lowed. Thiserror occur only in mode MacPas.

Error: lllegal assignment to for-loop variable" argl" The type of af or loop variable must be
an ordinal type. Loop variables cannot be reals or strings.

Error: Can't declarelocal variableas EXTERNAL Declaring local variables as external is not
allowed. Only global variables can reference to external variables.

136

APPENDIX C. COMPILER MESSAGES

Error: Procedureisalready declared EXTERNAL The procedure is aready declared with the
EXTERNAL directive in an interface or forward declaration.

Warning: Implicit uses of Variantsunit The Variant typeis used in the unit without any used unit
using the Variants unit. The compiler has implicitly added the Variants unit to the uses list. To
remove this warning the Variants unit needs to be added to the uses statement.

Error: Classand static methods can’t beused in INTERFACES Thespeci er ¢l ass and direc-
tivest at i ¢ can't be used in interfaces because al methods of an interfaces must be public.

Error: Over ow in arithmetic operation An operation on two integers values produced an over-
ow

C.4 Typecheckingerrors

This section lists al errors that can occur when type checking is performed.

Error: Type mismatch This can happen in many cases.

e The variable you're assigning to is of a different type than the expression in the assign-
ment.

e You are calling a function or procedure with parameters that are incompatible with the
parameters in the function or procedure de nition.

Error: Incompatibletypes: got "argl" expected "arg2" Thereisno conversion possible between
the two types Another possiblity isthat they are declared in different declarations:

Var
Al : Array[1l..10] O Integer;
A2 : Array[1l..10] O Integer;

Begi n
Al:=A2; { This statenment gives also this error, it
is due the strict type checking of pascal }
End.

Error: Type mismatch between "argl" and "arg2" Thetypesare not equal
Error: Typeidenti er expected Theidenti er isnot atype, or you forgot to supply atypeidenti er.

Error: Variableidenti er expected This happens when you pass a constant to a routine (such as
I nc var or Dec) when it expects avariable. You can only pass variables as arguments to these
functions.

Error: Integer expression expected, but got "argl" The compiler expects an expression of type
integer, but gets a different type.

Error: Boolean expression expected, but got "argl" The expression must be a boolean type, it
should be return true or false.

Error: Ordinal expression expected The expression must be of ordinal type, i.e.,, maximum a
Longi nt . This happens, for instance, when you specify a second argument to | nc or Dec
that doesn’t evaluate to an ordinal value.

Error: pointer type expected, but got "argl" Thevariableor expressionisn't of thetypepoi nt er .
This happens when you pass a variable that isn’t a pointer to Newor Di spose.

137

APPENDIX C. COMPILER MESSAGES

Error: classtype expected, but got "argl" The variable of expression isn't of the type cl ass.
This happens typically when

1. The parent classin aclass declaration isn’t aclass.
2. An exception handler (On) contains atype identi er that isn’t aclass.

Error: Can’'t evaluate constant expression Thiserror can occur when the bounds of an array you
declared does not evaluate to ordinal constants

Error: Set elementsare not compatible You aretrying to make an operation on two sets, when the
set element types are not the same. The base type of a set must be the same when taking the
union

Error: Operation not implemented for sets several binary operations are not de ned for sets like
div mod ** (also >= <= for now)

Warning: Automatic type conversion from oating typeto COMP which isan integer type An
implicit type conversion from areal type to a conp is encountered. Since conp is a 64 bit
integer type, this may indicate an error.

Hint: use DIV instead to get an integer result When hintsare on, then an integer division with the
'[" operator will procuce this message, because the result will then be of typereal

Error: string typesdoesn’t match, because of $vV+ mode When compiling in { $V+} mode, the
string you pass as a parameter should be of the exact same type as the declared parameter of
the procedure.

Error: succ or pred on enumswith assignments not possible When you declared an enumeration
type which has assignmentsin it, asin C, likein the following:

Tenum = (a, b, e: =5);

you cannot use the Succ or Pr ed functions on them.

Error: Can’t read or writevariablesof thistype You are trying to read or wi t e a variable
from or to a le of type text, which doesn’t support that. Only integer types, reals, pchars and
strings can be read from/written to atext le. Booleans can only be written to text les.

Error: Can't usereadin or writeln on typed le readl nandwr it el nareonly alowedfor text
les.

Error: Can't useread or writeon untyped le. read and write are only alowed for text or
typed les.

Error: Typecon ict between set elements Thereis at least one set element which is of the wrong
type, i.e. not of the set type.

Warning: lo/hi(dword/qword) returnsthe upper/lower word/dword FreePascal supportsan over-
loaded version of | o/ hi for | ongi nt/ dwor d/ i nt 64/ gwor d which returns the low-
er/upper word/dword of the argument. TP always uses a 16 hit | o/ hi which returns always
bits 0..7 for | 0 and the bits 8..15 for hi . If you want the TP behavior you have to type cast
the argument to wor d/ i nt eger

Error: Integer or real expression expected The rst argumentto str must area or integer type.

Error: Wrongtype"argl" in array constructor You aretrying to useatypein an array construc-
tor which is not allowed.

138

APPENDIX C. COMPILER MESSAGES

Error: Incompatibletypefor arg no. argl: Got "arg2", expected "arg3" You aretrying to pass
aninvalid type for the speci ed parameter.

Error: Method (variable) and Procedure (variable) are not compatible You can't assign amethod
to aprocedure variable or a procedure to a method pointer.

Error: Illegal constant passed to internal math function The constant argument passed to aln or
sgrt function is out of the de nition range of these functions.

Error: Can’'t get the address of constants It is not possible to get the address of a constant, be-
cause they aren’t stored in memory, you can try making it atyped constant.

Error: Argument can’t beassigned to Only expressions which can be on the left side of an as-
signment can be passed as call by reference argument Remark: Properties can be only used on
the left side of an assignment, but they cannot be used as arguments

Error: Can't assign local procedure/function to procedure variable It's not allowed to assign a
local procedure/function to a procedure variable, because the calling of local procedure/func-
tion is different. You can only assign local procedure/function to avoid pointer.

Error: Can’t assign valuesto an address It is not alowed to assign a value to an address of a
variable,constant, procedure or function. You can try compiling with -So if the identi er isa
procedure variable.

Error: Can’t assign valuesto const variable It's not allowed to assign avalue to a variable which
is declared as a const. Thisis normally a parameter declared as const, to alow changing the
value make the parameter as a value parameter or avar.

Error: Array typerequired If you are accessing a variable using an index '[<x>]" then the type
must be an array. In FPC mode also a pointer is allowed.

Error: interface type expected, but got " argl”

Warning: Mixing signed expressions and longwor ds gives a 64bit result If you divide (or calcu-
late the modulus of) asigned expression by alongword (or vice versa), or if you have over ow
and/or range checking turned on and use an arithmetic expression (+, -, *, div, mod) in which
both signed numbers and longwords appear, then everything hasto be evaluated in 64bit which
is slower than normal 32bit arithmetic. You can avoid this by typecasting one operand so it
matches the resulttype of the other one.

Warning: Mixing signed expressions and car dinals here may cause a range check error If you
use a binary operator (and, or, xor) and one of the operandsis alongword while the other one
is asigned expression, then, if range checking is turned on, you may get a range check error
because in such a case both operands are converted to longword before the operation is carried
out. You can avoid this by typecasting one operand so it matches the resulttype of the other
one.

Error: Typecast has different size (argl -> arg2) in assignment Type casting to atype with adif-
ferent sizeis not allowed when the variable is used for assigning.

Error: enumswith assignments can’t be used asarray index When you declared an enumeration
type which has assignmentsin it, asin C, like in the following:

Tenum = (a, b, e: =5);

you cannot use it asindex of an array.

139

APPENDIX C. COMPILER MESSAGES

Error: Classor Object types"argl" and "arg2" arenot related Thereisatypecast from oneclass
or object to another while the class/object are not related. Thiswill probably lead to errors

Warning: Classtypes"argl" and "arg2" arenot related There is a typecast from one class or
object to another while the class/object are not related. Thiswill probably lead to errors

Error: Classor interface type expected, but got "argl"”
Error: Type"argl" isnot completely de ned

Warning: String literal has more charactersthan short string length The size of the constant string,
which is assigned to a shortstring, is longer than the maximum size of the shortstring

Warning: Comparison isalways false dueto range of values There is a comparison between an
unsigned value and a signed constant which is less than zero. Because of type promotion, the
statement will always evaluate to false. Exlicitly typecast the constant to the correct range to
avoid this problem.

Warning: Comparison isalwaystrue dueto range of values There is a comparison between an
unsigned value and a signed constant which is less than zero. Because of type promotion, the
statement will always evaluate to true. Exlicitly typecast the constant to the correct range to
avoid this problem.

Warning: Constructing aclass"argl" with abstract methods An instance of a class is created
which contains non-implemented abstract methods. Thiswill probably lead to a runtime error
211 inthe codeiif that routineis ever called. All abstract methods should be overriden.

Hint: Theleft operand of the IN operator should be byte sized The left operand of thei n oper-
ator is not an ordinal or enumeration which ts within 8-bits, this may lead to range check
errors. The i n operator currently only supports a left operand which ts within a byte. In
the case of enumerations, the size of an element of an enumeration can be controlled with the
{ $PACKENUM or { $Zn} switches.

Warning: Type size mismatch, possible loss of data/ range check error There is an assignment
to asmaller type than the source type. This means that this may cause a range-check error, or
may lead to possible loss of data.

Hint: Type size mismatch, possible loss of data/ range check error There is an assignment to a
smaller type than the source type. This means that this may cause a range-check error, or may
lead to possible loss of data.

Error: Theaddress of an abstract method can’t be taken An abstract method has no body, so the
address of an abstract method can’t be taken.

Error: The operator isnot applicable for the operand type You aretrying an operator that is not
available for the type of the operands

Error: Constant Expression expected The compiler expects an constant expression, but gets a
variable expression.

Error: Operation "argl" not supported for types"arg2" and "arg3" The operation is not al-
lowed for the supplied types

Error: lllegal type conversion: "argl" to"arg2" When doingatype-cast, you must take care that
the sizes of the variable and the destination type are the same.

Hint: Conversion between ordinalsand pointersisnot portable If youtypecast apointer to alongint
(or vice-versa), this code will not compile on a machine using 64-bit for pointer storage.

140

APPENDIX C. COMPILER MESSAGES

Warning: Conversion between ordinalsand pointersisnot portable If you typecast a pointer to
aordinal type of a different size (or vice-versa), this can cause problems. Thisis awarning
to help nding the 32bit speci ¢ code where cardinal/longint is used to typecast pointers to
ordinals. A solution isto use the ptrint/ptruint types instead.

Error: Can’t determine which overloaded function to call You'recalling overloaded functionswith
a parameter that doesn’t correspond to any of the declared function parameter lists. e.g. when
you have declared a function with parameterswor d and | ongi nt , and then you call it with
aparameter which is of typei nt eger .

Error: lllegal counter variable The type of af or loop variable must be an ordina type. Loop
variables cannot be reals or strings.

C.5 Symboal handling

This section lists al the messages that concern the handling of symbols. This means all things that
have to do with procedure and variable names.

Error: Identi er not found "argl" The compiler doesn't know this symbol. Usually happens
when you misspel the name of avariable or procedure, or when you forgot to declareavariable.

Fatal: Internal Error in SymTableStack() An internal error occurred in the compiler; If you en-
counter such an error, please contact the devel opers and try to provide an exact description of
the circumstances in which the error occurs.

Error: Duplicateidenti er "argl" Theidenti er was already declared in the current scope.

Hint: Identi er already dened inargl at linearg2 Theidenti er was already declared in a pre-
Vious scope.

Error: Unknown identi er "argl® The identi er encountered has not been declared, or is used
outside the scope where it is de ned.

Error: Forward declaration not solved "argl" This can happen in two cases.

e Thishappenswhen you declare afunction (inthei nt er f ace part, or withaf or war d
directive, but do not implement it.

e You reference atype which isn’t declared in the current t ype block.
Error: Error in typedenition Thereisan error in your de nition of anew array type:

Oneof therangedelimitersin an array declarationiserroneous. For example, Array [1.. 1. 25]
will trigger this error.

Error: Forward typenot resolved "argl" A symbol was forward de ned, but no declaration was
encountered.

Error: Only static variables can be used in static methods or outside methods A static method
of an object can only access static variables.

Fatal: record or classtype expected Thevariableor expressionisn’t of thetyper ecor d orcl ass.

Error: Instances of classes or objectswith an abstract method are not allowed Youaretrying to
generate an instance of a class which has an abstract method that wasn’t overridden.

Warning: Label not dened "argl" A label was declared, but not de ned.
Error: Label used but not dened "argl" A label was declared and used, but not de ned.

141

APPENDIX C. COMPILER MESSAGES

Error: lllegal label declaration This error should never happen; it occursif alabel is de ned out-
side a procedure or function.

Error: GOTO and LABEL are not supported (use switch -Sg) You must compileaprogram which
has| abel sand got o statements with the - Sg switch. By default, | abel and got o aren’t
supported.

Error: Label not found A got o | abel wasencountered, but the label isn't declared.
Error: identi er isn't alabel Theidenti er speci ed after the got o isn't of type label.
Error: label already dened You are de ning alabel twice. You can de ne alabel only once.

Error: illegal type declaration of set elements The declaration of a set contains an invalid type
de nition.

Error: Forward class de nition not resolved "argl" You declared aclass, but you did not imple-
ment it.

Hint: Unit "argl" not used in arg2 The unit referenced in the uses clause is not used.

Hint: Parameter "argl" not used The identi er was declared (locally or globally) but was not
used (locally or globally).

Note: Local variable" argl" not used You have declared, but not used avariable in a procedure or
function implementation.

Hint: Value parameter " argl" isassigned but never used Theidenti er was declared (locally or
globally) set but not used (locally or globally).

Note: Local variable" argl" isassigned but never used The variable in a procedure or function
implementation is declared, set but never used.

Hint: Local argl "arg2" isnot used A local symbol is never used.
Note: Private eld "argl.arg2" isnever used

Note: Private eld "argl.arg2" isassigned but never used

Note: Private method " argl.arg2" never used

Error: Set type expected The variable or expression is not of type set. This happensinanin
statement.

Warning: Function result doesnot seem to be set You can get thiswarning if the compiler thinks
that a function return value is not set. Thiswill not be displayed for assembler procedures, or
procedures that contain assembler blocks.

Warning: Type"argl" isnot aligned correctly in current record for C Arrayswith sizesnot mul-
tiples of 4 will be wrongly aligned for C structures.

Error: Unknown record eld identi er "argl" The eld doesn’t exist in the record/object de ni-
tion.

Warning: Local variable" argl" doesnot seem to beinitialized This messageis displayed if the
compiler thinksthat avariablewill be used (i.e. appearsin the right-hand-side of an expression)
when it was not initialized rst (i.e. appeared in the left-hand side of an assigment)

Warning: Variable"argl" doesnot seem to beinitialized This message is displayed if the com-
piler thinks that a variable will be used (i.e. appears in the right-hand-side of an expression)
when it was not initialized rst (i.e. appeared in the left-hand side of an assigment)

142

APPENDIX C. COMPILER MESSAGES

Error: identi er identsno member "argl" Thiserror is generated when an identi er of arecord,
eld, or method is accessed whileit is not de ned.

Hint: Found declaration: argl You get this when you use the - vh switch. In case an overloaded
procedure is not found, then all candidate overloaded procedures are listed, with their parame-
ter lists.

Error: Data element too large You get this when you declare a data el ement whose size exceeds
the prescribed limit (2 Gb on 80386+/68020+ processors)

Error: No matching implementation for interface method " argl" found There was no match-
ing method found which could implement the interface method. Check argument types and
result type of the methods.

Warning: Symbol "argl" isdeprecated Thismeansthat asymbol (avariable, routine, etc...) which
isdeclared asdepr ecat ed isused. Deprecated symbols may no longer be availablein newer
versions of the unit / library. Usage of this symbol should be avoided as much as possible.

Warning: Symbol "argl" isnot portable This means that a symbol (a variable, routine, etc...)
which is declared as pl at f or mis used. This symbol’s value, usage and availability is plat-
form speci ¢ and should not be used if the source code must be portable.

Warning: Symbol "argl" isnot implemented Thismeansthat asymbol (avariable, routine, etc...)
which isdeclared as uni npl enent ed isused. This symbol isde ned, but is not yet imple-
mented on this speci ¢ platform.

Error: Can’t create uniquetype from thistype Only simple types like ordinal, oat and string
types are supported when rede ning atypewith t ype newt ype = type ol dtype;.

Hint: Local variable™" argl" doesnot seem to beinitialized Thismessageisdisplayedif thecom-
piler thinks that a variable will be used (i.e. appears in the right-hand-side of an expression)
when it was not initialized rst (i.e. appeared in the left-hand side of an assigment)

Hint: Variable" argl" doesnot seem to beinitialized This message is displayed if the compiler
thinks that a variable will be used (i.e. appears in the right-hand-side of an expression) when
it wasnot initialized rst (i.e. appeared in the left-hand side of an assigment)

C.6 Code generator messages

This section lists all messages that can be displayed if the code generator encounters an error condi-
tion.

Error: Parameter list size exceeds 65535 bytes The 386 processor limitsthe parameter list to 65535
bytes (the RET instruction causes this)

Error: Filetypesmust bevar parameters You cannot specify les as value parameters, i.e. they
must always be declared var parameters.

Error: Theuseof afar pointer isn't allowed there Free Pascal doesn’t support far pointers, so
you cannot take the address of an expression which has a far reference as aresult. The mem
construct has a far reference as aresult, so the following code will produce this error:

var p : pointer;

p .:@rEn[a000: 000] ;

143

APPENDIX C. COMPILER MESSAGES

Error: EXPORT declared functionscan’t be called No longer in use.

Warning: Possibleillegal call of constructor or destructor The compiler detected that aconstruc-
tor or destructor is called within a a method. This will probably lead to problems, since con-
structors / destructors require parameters on entry.

Note: Inef cient code Your statement seems dubious to the compiler.

Warning: unreachable code You speci ed a construct which will never be executed. Example:

while fal se do
begi n
{.. code ...}
end;

Error: Abstract methods can’t be called directly You cannot call an abstract method directy, in-
stead you must call aoverriding child method, because an abstract method isn’t implemented.

Register argl weight arg2 arg3 Debugging message. Shown when the compiler considers a vari-
able for keeping in the registers.

Stack frameisomitted Some procedure/functions do not need a complete stack-frame, o it is
omitted. This message will be displayed when the -vd switch is used.

Error: Object or classmethods can’t beinline. You cannot have inlined object methods.

Error: Procvar callscannot beinline. A procedure with a procedural variable call cannot be in-
lined.

Error: No codefor inline procedure stored The compiler couldn’t store code for the inline proce-
dure.

Error: Element zero of an ansi/wide- or longstring can’t be accessed, use (set)length instead You
should use set | engt h to set the length of an ansi/wide/longstring and | engt h to get the
length of such a string types

Error: Constructorsor destructorscan not be called inside a’with’ clause Insideawi t h clause
you cannot call a constructor or destructor for the object you have inthewi t h clause.

Error: Cannot call message handler methods directly A message method handler method cannot
be called directly if it contains an explicit self argument

Error: Jump in or outside of an exception block It isnot allowed to jump in or outside of an ex-
ception block liketry. . final ly..end;:

| abel 1;
try
if not(final) then
goto 1; /1 this line will cause an error
finally
end;
1:

144

APPENDIX C. COMPILER MESSAGES

Error: Control ow statementsaren’t allowed in a nally block It isn't allowed to use the con-
trol ow statements br eak, cont i nue and exi t insidea nally statement. The following
example shows the problem:

try
p;
finally

exit; // This exit ISNT all owed
end;

If the procedure p raises an exception the nally block isexecuted. If the execution reachesthe
exit, it’s unclear what to do: exiting the procedure or searching for another exception handler

Warning: Parameters size exceeds limit for certain cpu’s This indicates that you are declaring
more than 64K of parameters, which might not be supported on other processor targets.

Warning: Local variable size exceed limit for certain cpu’s Thisindicates that you are declaring
more than 32K of Icoal variables, which might not be supported on other processor targets.

Error: Local variables size exceeds supported limit This indicates that you are declaring more
than 32K of Icoal variables, which is not supported by this processor.

Error: BREAK not allowed You'retryingto use br eak outside aloop construction.

Error: CONTINUE not allowed You'retryingto usecont i nue outside aloop construction.

C.7 Errorsof assembling/linking stage

This section lists errors that occur when the compiler is processing the command line or handling the
con guration les.

Warning: Source operating system rede ned
Info: Assembling (pipe) argl

Error: Can’t createassember le: argl The mentioned le can’t be created. Check if you have
got access permissions to create this le

Error: Can't createobject le argl The mentioned le can't be created. Check if you've got
access permissions to create this le

Error: Can’t createarchive le: argl Thementioned lecan’t be created. Check if you've access
permissionsto create this le

Error: Assembler argl not found, switching to external assembling
Using assembler: argl

Error: Error while assembling exitcode argl There was an error while assembling the le using
an external assembler. Consult the documentation of the assembler tool to nd out more infor-
mation on this error.

145

APPENDIX C. COMPILER MESSAGES

Error: Can't call theassembler, error argl switching to external assembling
Info: Assembling argl
Info: Assembling with smartlinking argl

Warning: Object argl not found, Linking may fail ! One of the object leismissing, and linking
will probably fail. Check your paths.

Warning: Library argl not found, Linking may fail ! One of thelibrary leismissing, and link-
ing will probably fail. Check your paths.

Error: Error whilelinking Generic error while linking.

Error: Can’'t call thelinker, switching to external linking
Info: Linking argl

Error: Util argl not found, switching to external linking
Using util argl

Error: Creation of Executablesnot supported

Error: Creation of Dynamic/Shared Libraries not supported
Info: Closing script argl

Error: resource compiler not found, switching to external mode
Info: Compiling resource argl

unit argl can’t be statically linked, switching to smart linking
unit argl can’t be smart linked, switching to static linking
unit argl can’t be shared linked, switching to static linking
Error: unit argl can’'t be smart or static linked

Error: unit argl can’t be shared or static linked

C.8 Unit loading messages.

This section lists all messages that can occur when the compiler is loading a unit from disk into
memory. Many of these messages are informational messages.

Unitsearch: argl When you usethe - vt , the compiler tells you whereit triesto nd unit les.
PPU Loading argl Whenthe- vt switch isused, the compiler tells you what unitsit loads.
PPU Name: argl Whenyou usethe-vu ag, the unit nameis shown.

PPU Flags: argl When you usethe-vu ag, the unit ags are shown.

PPU Crc: argl Whenyou usethe- vu ag, the unit CRC check is shown.

PPU Time: argl When you usethe- vu ag, the timethe unit was compiled is shown.

PPU Filetoo short The ppu leistoo short, not all declarations are present.

146

APPENDIX C. COMPILER MESSAGES

PPU Invalid Header (no PPU at thebegin) A unit le contains as the rst three bytes the ascii
codes of PPU

PPU Invalid Version argl Thisunit lewas compiled with a different version of the compiler, and
cannot be read.

PPU is compiled for another processor Thisunit le was compiled for a different processor type,
and cannot be read

PPU iscompiled for an other target Thisunit le was compiled for a different target, and cannot
be read

PPU Source: argl When you usethe- vu ag, the unit CRC check is shown.

Writing argl When you specify the - vu switch, the compiler will tell you where it writes the unit
le.

Fatal: Can’'t Write PPU-File An error occurred when writing the unit le.

Fatal: Error reading PPU-File This means that the unit |le was corrupted, and contains invalid
information. Recompilation will be necessary.

Fatal: unexpected end of PPU-File Unexpected end of le. This may mean that the PPU leis
corrupted.

Fatal: Invalid PPU-Fileentry: argl The unit the compiler istrying to read is corrupted, or gener-
ated with a newer version of the compiler.

Fatal: PPU Dbx count problem Thereisaninconsistency in the debugging information of the unit.
Error: lllegal unit name: argl The name of the unit does not match the le name.

Fatal: Too much units Free Pascal has a limit of 1024 units in a program. You can change this
behavior by changing the maxuni t s constant in the fmodule.pas le of the compiler, and
recompiling the compiler.

Fatal: Circular unit reference between argl and arg2 Two units are using each other in the inter-
face part. Thisisonly allowed inthei npl enent at i on part. At least one unit must contain
the other oneinthei npl enent at i on section.

Fatal: Can’t compile unit argl, no sources available A unit was found that needs to be recom-
piled, but no sources are available.

Fatal: Can’'t nd unit argl Youtriedtouseaunitof whichthe PPU leisn't found by the compiler.
Check your con guration lefor the unit paths

Warning: Unit argl was not found but arg2 exists

Fatal: Unit argl searched but arg2 found Dos truncation of 8 letters for unit PPU les may lead
to problems when unit nameis longer than 8 letters.

Warning: Compiling the system unit requiresthe -Us switch When recompiling the system unit
(it needs special treatment), the - Us must be speci ed.

Fatal: Therewereargl errorscompiling module, stopping When the compiler encounters afatal
error or too many errors in amodule then it stops with this message.

Load from argl (arg2) unit arg3 Whenyou usethe- vu ag, which unit isloaded from which unit
is shown.

Recompiling argl, checksum changed for arg2

147

APPENDIX C. COMPILER MESSAGES

Recompiling argl, source found only Whenyou usethe- vu ag, these messagestell you why the
current unit is recompiled.

Recompiling unit, static lib isolder than ppu le When you usethe - vu ag, the compiler warns
if the static library of the unit are older than the unit leitself.

Recompiling unit, shared lib isolder than ppu le Whenyou usethe- vu ag, the compiler warns
if the shared library of the unit are older than the unit leitself.

Recompiling unit, obj and asm are older than ppu le When you use the - vu ag, the compiler
warnsif the assembler or object le of the unit are older than the unit le itself.

Recompiling unit, obj isolder than asm When you use the - vu ag, the compiler warns if the
assembler le of the unit is older than the object |e of the unit.

Parsing interface of argl When you usethe - vu ag, the compiler warns that it starts parsing the
interface part of the unit

Parsing implementation of argl Whenyou usethe- vu ag, the compiler warnsthat it starts pars-
ing the implementation part of the unit

Second load for unit argl When you usethe- vu ag, the compiler warnsthat it starts recompiling
aunit for the second time. This can happend with interdepend units.

PPU Check leargltimearg2 When you use the - vu ag, the compiler show the lename and
date and time of the le which arecompile depends on

Warning: Can’t recompile unit argl, but found modifed include les A unit was found to have
modi ed include les, but some source leswere not found, so recompilation isimpossible.

Hint: Fileargl isnewer than Release PPU learg2 A modi ed source le for a unit was found
that was compiled with the release ag (-Ur). The unit will not implicitly be recompiled
because thisrelease agisset.

Using a unit which was not compiled with correct FPU mode Trying to compile code while us-
ing units which were not compiled with the same oating point format mode. Either al code
should be compiled with FPU emulation on, or with FPU emulation off.

Loading interface unitsfrom argl When you use the - vu ag, the compiler warns that it starts
loading the units de ned in the interface part of the unit.

L oading implementation unitsfrom argl When you use the - vu ag, the compiler warns that it
starts loading the units de ned in the implementation part of the unit.

Interface CRC changed for unit argl When you use the - vu ag, the compiler warns that it the
CRC caculated for the interface has been changed after the implementation has been parsed.

Implementation CRC changed for unit argl When you usethe-vu ag, the compiler warns that
it the CRC calculated has been changed after the implementation has been parsed.

Finished compiling unit argl When you use the - vu ag, the compiler warns that it has nished
compiling the unit.

Add dependency of argl to arg2 When you usethe - vu ag, the compiler warnsthat it has added
a dependency between the two units.

No reload, iscaller: argl Whenyou usethe- vu ag, the compiler warnsthat it haswill not reload
the unit because it is the unit that wants to load this unit

No reload, already in second compile: argl When you use the - vu ag, the compiler warns that
it haswill not reload the unit becauseit is aready in a second recompile

148

APPENDIX C. COMPILER MESSAGES

Flag for reload: argl When you usethe- vu ag, the compiler warns that it hasto reload the unit

Forced reloading When you use the - vu ag, the compiler warns that it has is reloading the unit
because it was required

Previous state of argl: arg2 When you usethe - vu ag, the compiler shows the previous state of
the unit

Already compiling argl, setting second compile When you use the - vu ag, the compiler warns
that it starts recompiling a unit for the second time. This can happend with interdepend units.

Loading unit argl When you usethe- vu ag, the compiler warns that it starts loading the unit.

Finished loading unit argl When you usethe- vu ag, the compiler warnsthat it nished loading
the unit.

Registering new unit argl When you usethe - vu ag, the compiler warns that it has found a new
unit and registersit in the internal lists.

Re-resolving unit argl When you usethe- vu ag, the compiler warnsthat it hasto recalculate the
internal data of the unit

Skipping re-resolving unit argl, still loading used units Whenyou usethe- vu ag, the compiler
warns that it skips to recalculate the internal data of the unit because there is no data to recal-
culate

C.9 Command-linehandling errors

This section lists errors that occur when the compiler is processing the command line or handling the
con guration les.

Warning: Only one source lesupported You can specify only one source le on the command
line. The rst one will be compiled, others will be ignored. This may indicate that you forgot
a’ -’ s€gn.

Warning: DEF lecan becreated only for OS/2 This option can only be speci ed when you're
compiling for OS/2

Error: nested response lesarenot supported you cannot nest response les with the @il e
command-line option.

Fatal: No source lenamein command line The compiler expects asource le name on the com-
mand line.

Note: No option insideargl cong le Thecompiler didn't nd any optioninthat cong le.
Error: lllegal parameter: argl You speci ed an unknown option.

Hint: -? writeshelp pages When an unknown option is given, this message is diplayed.
Fatal: Too many con g lesnested You can only nest up to 16 con g les.

Fatal: Unabletoopen leargl Theoption le cannot be found.

Reading further optionsfrom argl Displayed when you have notes turned on, and the compiler
switches to another options le.

Warning: Target isalready set to: argl Displayed if more than one - T option is speci ed.

149

APPENDIX C. COMPILER MESSAGES

Warning: Shared libs not supported on DOS platform, reverting to static If you specify - CDfor
the Dos platform, this message is displayed. The compiler supports only static libraries under
DOS

Fatal: too many IF(N)DEFs the #1 F(N) DEF statements in the options le are not balanced with
the #ENDI F statements.

Fatal: too many ENDIFs the#l F(N) DEF statements in the options le are not balanced with the
#ENDI F statements.

Fatal: open conditional at the end of the le the #I F(N) DEF statements in the options le are
not balanced with the #ENDI F statements.

Warning: Debug information generation is not supported by this executable Itispossibleto have
a compiler executable that doesn’t support the generation of debugging info. If you use such
an executable with the - g switch, this warning will be displayed.

Hint: Try recompiling with -dGDB It is possible to have a compiler executable that doesn't sup-
port the generation of debugging info. If you use such an executable with the - g switch, this
warning will be displayed.

Error: You are using the obsolete switch argl this warns you when you use a switch that is not
needed/supported anymore. It is recommended that you remove the switch to overcome prob-
lemsin the future, when the switch meaning may change.

Error: You are using the obsolete switch argl, please usearg?2 this warns you when you use a
switch that is not supported anymore. You must now use the second switch instead. It is
recommended that you change the switch to overcome problems in the future, when the switch
meaning may change.

Note: Switching assembler to default source writing assembler this noti es you that the assem-
bler has been changed because you used the -a switch which can’t be used with a binary
assembler writer.

Warning: Assembler output selected "argl" isnot compatible with " arg2"

Warning: "argl" assembler useforced Theassembler output selected can not generate object les
with the correct format. Therefore, the default assembler for thistarget is used instead.

Reading optionsfrom leargl Optionsare aso read from this le

Reading options from environment argl Options are also read from this environment string
Handling option " argl" Debug info that an option is found and will be handled

*** pressenter ***

Hint: Start of readingcon g leargl Starting of con g le parsing.

Hint: End of readingcon g leargl End of cong le parsing.

interpreting option " argl"

interpreting rstpassoption "argl"

interpreting le option " argl"

Reading con g le"argl"

found source lename"argl" Additional infos about options, displayed when you have debug
option turned on.

Error: Unknown code page

150

APPENDIX C. COMPILER MESSAGES

C.10 Assembler reader errors.

This section lists the errors that are generated by the inline assembler reader. They are not the
messages of the assembler itself.

C.10.1 General assembler errors

Divide by zeroin asm evaluator Thisfatal error isreported when a constant assembler expressions
does adivision by zero.

Evaluator stack over ow, Evaluator stack under ow These fatal errors are reported when a con-
stant assembler expression is too big to evaluate by the constant parser. Try reducing the
number of terms.

Invalid numeric format in asm evaluator Thisfatal error isreported when anon-numeric valueis
detected by the constant parser. Normally this error should never occur.

Invalid Operator in asm evaluator This fatal error is reported when a mathematical operator is
detected by the constant parser. Normally this error should never occur.

Unknown error in asm evaluator Thisfatal error is reported when an internal error is detected by
the constant parser. Normally this error should never occur.

Invalid numeric value Thiswarning isemitted when aconversion from octal,binary or hexadecimal
to decimal is outside of the supported range.

Escape sequenceignored This error is emitted when anon ANSI C escape sequence is detected in
aC string.

Asm syntax error - Prex not found This occurs when trying to use a non-valid pre x instruction

Asm syntax error - Tryingto add morethan oneprex This occurs when you try to add more
than one pre x instruction

Asm syntax error - Opcode not found You have tried to use an unsupported or unknown opcode

Constant value out of bounds This error is reported when the constant parser determines that the
value you are using is out of bounds, either with the opcode or with the constant declaration
used.

Non-label pattern contains @ This only applied to the m68k and Intel styled assembler, this is
reported when you try to use anon-label identi er witha’' @' pre x.

Internal error in Findtype()

Internal Error in ConcatOpcode()
Internal Errror converting binary
Internal Errror converting hexadecimal
Internal Errror converting octal
Internal Error in BuildScaling()
Internal Error in BuildConstant()
internal error in BuildReference()

internal error in HandleExtend()

151

APPENDIX C. COMPILER MESSAGES

Internal error in ConcatL abeledInstr() These errors should never occur, if they do then you have
found a new bug in the assembler parsers. Please contact one of the developers.

Opcode not in table, operands not checked Thiswarning only occurs when compiling the system
unit, or related les. No checking is performed on the operands of the opcodes.

@CODE and @DATA not supported This Turbo Pascal construct is not supported.
SEG and OFFSET not supported This Turbo Pascal construct is not supported.
Modulo not supported Modulo constant operation is not supported.

Floating point binary representation ignored

Floating point hexadecimal representation ignored

Floating point octal representation ignored These warnings occur when a oating point constant
are declared in a base other then decimal. No conversion can be done on these formats. You
should use a decimal representation instead.

Identi er supposed external Thiswarning occurs when a symbol is not found in the symolb table,
it istherefore considered external.

Functionswith void return value can’t return any valuein asm code Only routineswith areturn
value can have areturn value set.

Error in binary constant
Error in octal constant
Error in hexadecimal constant

Error ininteger constant These errors are reported when you tried using an invalid constant ex-
pression, or that the value is out of range.

Invalid labeled opcode

Asm syntax error - error in reference
Invalid Opcode

Invalid combination of opcode and operands
Invalid sizein reference

Invalid middle sized operand

Invalid three operand opcode

Assembler syntax error

Invalid operand type You tried using an invalid combination of opcode and operands, check the
syntax and if you are sureit is correct, please contact one of the developers.

Unknown identi er Theidenti er you aretrying to access does not exist, or isnot within the current
scope.

Trying to de ne an index register morethan once
Trying to de ne a segment register twice

Tryingto de neabaseregister twice You aretrying to de ne an index/segment register more then
once.

152

APPENDIX C. COMPILER MESSAGES

Invalid eld speci er Therecord or object eld you are trying to access does not exist, or isincor-
rect.

Invalid scaling factor
Invalid scaling value
Scaling value only allowed with index Allowed scaling values are 1,2,4 or 8.

Cannot use SELF outsidea method You are trying to access the SELF identi er for objects out-
side amethod.

Invalid combination of pre x and opcode This opcode cannot be pre xed by this instruction
Invalid combination of override and opcode Thisopcode cannot be overriden by this combination

Too many operandson line At most three operand instructions exist on the m68k, and i386, you
are probably trying to use an invalid syntax for this opcode.

Duplicate local symbol You are trying to rede ne alocal symbol, such asalocal label.
Unknown label identifer
Unde ned local symbol

local symbol not found inside asm statement Thislabel does not seem to have been de ned in the
current scope

Assemble node syntax error

Not a directive or local symbol The assembler statement is invalid, or you are not using a recog-
nized directive.

C.10.2 1386 speci c errors

repeat prex and a segment overrideon <=i386... A problemwithinterruptsand apre x instruc-
tion may occur and may cause false results on 386 and earlier computers.

Fwait can cause emulation problemswith emu387 Thiswarning isreported when usingthe FWAIT
instruction, it can cause emulation problems on systems which use the em387.dxe emulator.

You need GNU asversion >= 2.81 to compilethisMM X code MMX assembler code can only be
compiled using GASv2.8.1 or later.

NEAR ignored

FAR ignored NEAR and FAR areignored in the intel assemblers, but are still accepted for compati-
blity with the 16-bit code mode.

Invalid size for MOV SX/MOVZX
16-bit basein 32-bit segment
16-bit index in 32-bit segment 16-bit addressing is not supported, you must use 32-bit addressing.

Constant reference not allowed It is not alowed to try to address a constant memory address in
protected mode.

Segment overrides not supported Intel style (eg: rep ds stosb) segment overrides are not support
by the assembler parser.

153

APPENDIX C. COMPILER MESSAGES

Expressions of the form [sreg:reg... are currently not supported] To access amemory operand in a
different segment, you should use the sreg:[reg...] snytax instead of [sreg:reg...]

Size suf x and destination register do not match Inintel AT&T syntax, you are using a register
size which does not concord with the operand size speci ed.

Invalid assembler syntax. No ref with brackets
Trying to use a negative index register

L ocal symbolsnot allowed asreferences
Invalid operand in bracket expression

Invalid symbol name:

Invalid Reference syntax

Invalid string as opcode operand:

Null label references are not allowed

Using a de ned name as a local label

Invalid constant symbol

Invalid constant expression

/ at beginning of line not allowed

NOR not supported

Invalid oating point register name

Invalid oating point constant:

Asm syntax error - Should start with bracket
Asm syntax error - register:

Asm syntax error - in opcode operand

Invalid String expression

Constant expression out of bounds

Invalid or missing opcode

Invalid real constant expression
Parenthesisare not allowed

Invalid Reference

Cannot use __ SELF outside a method

Cannot use__ OLDEBP outside a nested procedure
Invalid segment override expression

Strings not allowed as constants

Switching sectionsis not allowed in an assembler block

Invalid global de nition

154

APPENDIX C. COMPILER MESSAGES

Line separator expected

Invalid local common de nition
Invalid global common de nition
assembler code not returned to text
invalid opcode size

Invalid character: <

Invalid character: >

Unsupported opcode

Invalid suf x for intel assembler
Extended not supported in thismode
Comp not supported in thismode
Invalid Operand:

Override operator not supported

C.10.3 m68k speci c errors.

Increment and Decrement mode not allowed together You aretrying to use dec/inc modetogether.

Invalid Register list in movem/fmovem The register list is invalid, normally a range of registers
should be separated by - and individual registers should be separated by a slash.

Invalid Register list for opcode
68020+ mode required to assemble

155

Appendix D

Runtimeerrors

Applications generated by Free Pascal might generate Run time error when certain abnormal con-
ditions are detected in the application. This appendix lists the possible run time errors and gives
information on why they might be produced.

1 Invalid function number Aninvalid operating system call was attempted.
2 Filenot found Reported when trying to erase, rename or open a non-existent le.

3 Path not found Reported by the directory handling routines when a path does not exist or isin-
valid. Also reported when trying to access a non-existent le.

4 Too many open les The maximum number of currently opened les by your process has been
reached. Certain operating systemslimit the number of leswhich can be opened concurrently,
and this error can occur when this limit has been reached.

5 File access denied Permission accessing the leisdenied. This error might be caused by several
reasons.
e Trying to open for writing a le which isread only, or which is actually a directory.
e Fileiscurrently locked or used by another process.

e Tryingtocreateanew le, or directory whilea le or directory of the same name aready
exists.

e Trying to read from a le which was opened in write only mode.
e Trying to write from a le which was opened in read only mode.
e Tryingto remove adirectory or lewhileit isnot possible.

e No permission to accessthe le or directory.

6 Invalid lehandle If thishappens, the levariable you are using istrashed; it indicates that your
memory is corrupted.

12 Invalid leaccesscode Reported when areset or rewrite is called with an invalid Fi | eMbde
value.

15 Invalid drive number The number given to the Get di r or ChDi r function speci es a non-
existent disk.

16 Cannot remove current directory Reported when trying to remove the currently active direc-
tory.

156

APPENDIX D. RUN TIME ERRORS

17 Cannot rename acrossdrives You cannot rename a le such that it would end up on another
disk or partition.

100 Disk read error Anerror occurred when reading from disk. Typically when you try to read past
theend of a le.

101 Disk writeerror Reported when the disk isfull, and you're trying to writeto it.

102 Filenot assigned This is reported by Reset , Rew i t e, Append, Renane and Er ase, if
you call them with an unassigned |e as a parameter.

103 File not open Reported by thefollowing functions: Cl ose, Read, Wite, Seek, EO,
Fil ePos, FileSize, Flush, Bl ockRead, andBl ockWi t e if the leisnot open.

104 File not open for input Reportedby Read, Bl ockRead, Eof, Eoln, SeekEof orSeekEol n
if the leisnot opened with Reset .

105 File not open for output Reported by writeif atext leisn’t opened with Rewr i t e.

106 Invalid numeric format Reported when a non-numeric value is read from a text le, when a
numeric val ue was expected.

150 Disk iswrite-protected (Critical error)

151 Bad driverequest struct length (Critical error)
152 Drive not ready (Critical error)

154 CRC error in data (Critical error)

156 Disk seek error (Critical error)

157 Unknown mediatype (Critical error)

158 Sector Not Found (Critical error)

159 Printer out of paper (Critical error)

160 Device write fault (Critical error)

161 Deviceread fault (Critical error)

162 Hardwarefailure (Critical error)

200 Division by zero The application attempted to divide a number by zero.

201 Range check error If you compiled your program with range checking on, then you can get
this error in the following cases:

1. An array was accessed with an index outside its declared range.
2. Tryingto assign avalueto avariable outside its range (for instance an enumerated type).

202 Stack over ow error The stack has grown beyond its maximum size (in which case the size of
local variables should be reduced to avoid this error), or the stack has become corrupt. This
error is only reported when stack checking is enabled.

203 Heap over ow error The heap has grown beyond its boundaries. Thisis caused when trying
to alocate memory exlicitly with New, Get Memor Real | oc Mem or when a class or object
instance is created and no memory isleft. Please note that, by default, Free Pascal provides a
growing heap, i.e. the heap will try to allocate more memory if needed. However, if the heap
has reached the maximum size allowed by the operating system or hardware, then you will get
thiserror.

157

APPENDIX D. RUN TIME ERRORS

204 Invalid pointer operation Thisyou will get if you call Di spose or Fr eemremwith aninvalid
pointer (notably, Ni 1)

205 Floating point over ow You aretrying to use or produce too large real numbers.
206 Floating point under ow You are trying to use or produce too small real numbers.

207 Invalid oating point operation Can occur if you try to calculate the square root or logarithm
of a negative number.

210 Object not initialized When compiled with range checking on, a program will report this error
if you call avirtual method without having called istr constructor.

211 Call to abstract method Your program tried to execute an abstract virtual method. Abstract
methods should be overridden, and the overriding method should be called.

212 Stream registration error This occurs when an invalid type is registered in the objects unit.

213 Callection index out of range You are trying to access a collection item with an invalid index
(obj ect s unit).

214 Collection over ow error The collection has reached its maximal size, and you are trying to
add another element (obj ect s unit).

215 Arithmetic over ow error This error is reported when the result of an arithmetic operation is
outside of its supported range. Contrary to Turbo Pascal, this error is only reported for 32-bit
or 64-bit arithmetic over ows. Thisis due to the fact that everything is converted to 32-bit or
64-hit before doing the actual arithmetic operation.

216 General Protection fault The application tried to access invalid memory space. This can be
caused by severa problems:

1. Deferencingani | pointer

2. Trying to access memory which is out of bounds (for example, calling nove with an
invalid length).

217 Unhandled exception occurred An exception occurred, and there was no exception handler
present. Thesysut i | s unitinstalls adefault exception handler which catches all excpetions
and exits gracefully.

219 Invalid typecast Thrownwhen aninvalid typecast is attempted on aclassusing theas operator.
This error is aso thrown when an object or classis typecast to an invalid class or object and
avirtual method of that class or object is called. Thislast error is only detected if the - CR
compiler option is used.

227 Assertion failed error An assertion failed, and no Asser t Err or Pr oc procedura variable
was installed.

158

Appendix E

The Floating Point Coprocessor
emulator

In this appendix we note some caveats when using the oating point emulator on GO32V 2 systems.
Under GO32V 1 systems, dl is as described in the installation section.

Q: | don't have an 80387. How do | compile and run oating point programs under GO32V2?
Q: What shall | install on a target machine which lacks hardware oating-point support?

A': Programswhich use oating point computations and could be run on machines without an 80387
should be allowed to dynamically load the emu387.dxe le at run-time if needed. To do this you
must link the enu387 unit to your exectuable program, for example:

Pr ogram MyFl oat ;
Uses enu387;

var
r: real;
Begi n
r:=1.0;
Witeln(r);
end.

Emu387 takes care of loading the dynamic emulation point library.
You should always add emulation when you distribute oating-point programs.

A few users reported that the emulation won't work for them unless they explicitly tell DJGPP there
isno x87 hardware, likethis:

set 387=N
set enmu387=c:/dj gpp/ bi n/ enu387. dxe

There is an alternative FP emulator called WMEMU. It mimics areal coprocessor more closealy.

WARNING: We strongly suggest that you use WMEMU as FPU emulator, since emu387.dxe does
not emulate all the instructions which are used by the Run-Time Libary such as FWAI T.

Q: I have an 80387 emulator installed in my AUTOEXEC.BAT, but DJGPP-compiled oating point
programs still doesn’'t work. Why?

159

APPENDIX E. THE FLOATING POINT COPROCESSOR EMULATOR

A : DJGPP switches the CPU to protected mode, and the information needed to emulate the 80387
is different. Not to mention that the exceptions never get to the real-mode handler. You must use
emulators which are designed for DJGPP. Apart of emu387 and WMEMU, the only other emulator
known to work with DJGPP is Q87 from QuickWare. Q87 is shareware and is available from the
QuickWare Web site.

Q: 1 run DJGPP in an 0s/2 DOShox, and I'mtold that 0s/2 will install its own emulator library if
the CPU has no FPU, and will transparently execute FPU instructions. So why won't DJGPP run
oating-point code under 0s/2 on my machine?

A 0s/2 ingtalls an emulator for native 0s/2 images, but does not provide FPU emulation for DOS
sessions.

160

Appendix F

A samplegdb.ini le

Here you have asample gdb.ini lelisting, which gives better resultswhen using gdb. Under LINUX
you should put thisin a.gdbinit leinyour home directory or the current directory..

set print denmangle off
set gnutarget auto
set verbose on

set conplaints 1000
dir ./rtl/dosv2

set | anguage c++
set print vtbl on
set print object on
set print symon
set print pretty on
disp /i $eip

defi ne pst

set $pos=&$ar g0

set $strlen = {byte}$pos

print {char}&$arg0.st @$strlen+l)
end

docunent pst

Print out a pascal string
end

161

Appendix G

Options and settings

In table (G.1) asummary of available boolean compiler directives and the corresponding command-
line options are listed. Other directives and the corresponding options are shown in table (G.2). For
more information about the command-line options, chapter 5, page 22. For more information about
the directives, see the Programmers guide.

Table G.1: Boolean Options and directves

Short long Opt Explanation

SA[+/ -] $ALI G\[ON OFF] Data alignment

$B[+/-] $BOOLEVAL[QV OFF] Boolean evaluation mode

$C +/ -] $ASSERTI ONS[ON OFF] -Sa Include assertions

$O +/ -] $DEBUG NFJ OV OFF] -g Include debug info

SE[+/ -] Coprocessor emulation

SF[+/ -] Far or near function (ignored)

$G +/ -] generate 80286 code (ignored)
$GOTJ OV OFF] -Sg Support GOTOand Label
$HI NTS[OV OFF] -vh Show hints

$H +/-] SLONGSTRI NGS[QN OFF] -Sh Useandistrings

$I[+/-] $I OCHECKS[ON OFF] -G Check I/O operation result
$I NLI NE[ON/ OFF] -Si Allow inline code

SL[+/-] $LOCALSYMBOLS[QN OFF] Local symbol information

$SM +/ -] STYPEI NFQ QV OFF] Generate RTTI for classes
$SMVX[ON/ OFF] Intel MM X support

SN[+/ -] Floating point sypport
$NOTES[ON OFF] -vn Emit notes

$q + -] Support overlays (ignored)

$P[+/ -] $OPENSTRI NGS[OV OFF] Support open strings

$Qq +/ -] SOVERFLONCHECKS[ONV OFF] -Co Over ow checking

SR +/-] S$RANGECHEKS[OV OFF] -Cr Range checks

$S[+/ -] - Stack checks
$SMARTLI NK[OV OFF] -CX Usesmartlinking
$STATI C[ON OFF] -St Allowuseof static

$T[+/ -] $TYPEDADDRESS[ON OFF] Types addresses

162

file:../prog/prog.html

APPENDIX G. OPTIONS AND SETTINGS

Table G.2: Options and directives

Short long Opt Explanation
$APPTYPE -W Application type (Win32/0S2)
$ASMMODE -R Assembler reader modus
$DEFI NE -d Denesymbol
$DESCRI PTI ON Set program description
$SELSE Conditional compilation switch
$ENDI F Conditional compilation end
$FATAL report fatal error
$HI NT Emit hint message

$I file $I NCLUDE Include leor literal text
$IF Conditional compilation start
$| FDEF NAME Conditional compilation start
$1 FNDEF Conditional compilation start
$I FOPT Conditional compilation start
$I NCLUDEPATH - Fi setinclude path
$I NFO Emit information message

SL file $SLI NK Link object le
$LI BRARYPATH -Fl Setlibrary path
$LI NKLI B nane link library

$M M N, MAX $MEMORY Set memory sizes
$MACRO -Sm Allow use of macros
SMESSAGE Emit message
$MODE Set compatibility mode
$NOTE Emite note message
$OBIJECTPATH -Fo Set object path
$OUTPUT -A Setoutput format
$PACKENUM Enumeration type size
$PACKRECORDS Record element alignment
$SATURATI ON Saturation (ignored)
$STOP Stop compilation
$UNDEF -u Unde ne symbol

163

	Introduction
	About this document
	About the compiler
	Getting more information.

	Installing the compiler
	Before Installation : Requirements
	System requirements
	Software requirements
	Under DOS
	Under UNIX
	Under Windows
	Under OS/2

	Installing the compiler.
	Installing under DOS or Windows
	Mandatory installation steps.
	Optional Installation: The coprocessor emulation

	Installing under Linux
	Mandatory installation steps.

	Optional configuration steps
	Before compiling
	Testing the compiler

	Compiler usage
	File searching
	Command line files
	Unit files
	Include files
	Object files
	Configuration file
	About long filenames

	Compiling a program
	Compiling a unit
	Units, libraries and smartlinking
	Reducing the size of your program

	Compiling problems
	General problems
	Problems you may encounter under DOS

	Compiler configuration
	Using the command-line options
	General options
	Options for getting feedback
	Options concerning files and directories
	Options controlling the kind of output.
	Options concerning the sources (language options)

	Using the configuration file
	#IFDEF
	#IFNDEF
	#ELSE
	#ENDIF
	#DEFINE
	#UNDEF
	#WRITE
	#INCLUDE
	#SECTION

	Variable substitution in paths

	The IDE
	First steps with the IDE
	Starting the IDE
	IDE Command line options
	The IDE screen

	Navigating in the IDE
	Using the keyboard
	Using the mouse
	Navigating in dialogs

	Windows
	Window basics
	Sizing and moving windows
	Working with multiple windows
	Dialog windows

	The Menu
	Accessing the menu
	The File menu
	The Edit menu
	The Search menu
	The Run menu
	The Compile menu
	The Debug menu
	The Tools menu
	The Options menu
	The Window menu
	The Help menu

	Editing text
	Insert modes
	Blocks
	Setting bookmarks
	Jumping to a source line
	Syntax highlighting
	Code Completion
	Code Templates

	Searching and replacing
	The symbol browser
	Running programs
	Debugging programs
	Using breakpoints
	Using watches
	The call stack
	The GDB window

	Using Tools
	The messages window
	Grep
	The ASCII table
	The calculator
	Adding new tools
	Meta parameters
	Building a command line dialog box

	Project management and compiler options
	The primary file
	The directory dialog
	The target operating system
	Compiler options
	Linker options
	Memory sizes
	Debug options
	The switches mode

	Customizing the IDE
	Preferences
	The desktop
	The Editor
	Mouse
	Colors

	The help system
	Navigating in the help system
	Working with help files
	The about dialog

	Keyboard shortcuts

	Porting Turbo Pascal Code
	Things that will not work
	Things which are extra
	Turbo Pascal compatibility mode
	A note on long file names under dos

	Utilities that come with Free Pascal
	Demo programs and examples
	fpcmake
	fpdoc - Pascal Unit documenter
	h2pas - C header to Pascal Unit converter
	Options
	Constructs

	h2paspp - preprocessor for h2pas
	Usage
	Options

	ppudump program
	ppumove program
	ptop - Pascal source beautifier
	ptop program
	The ptop configuration file
	ptopu unit

	rstconv program
	unitdiff program
	Synopsis
	Description and usage
	Options

	Units that come with Free Pascal
	Standard units
	Under DOS
	Under Windows
	Under Linux
	Under OS/2
	Unit availability

	Debugging your Programs
	Compiling your program with debugger support
	Using gdb to debug your program
	Caveats when debugging with gdb
	Support for gprof, the gnu profiler
	Detecting heap memory leaks
	Line numbers in run-time error backtraces
	Combining heaptrc and lineinfo

	CGI programming in Free Pascal
	Getting your data
	Data coming through standard input.
	Data passed through an environment variable

	Producing output
	I'm under Windows, what now ?

	Alphabetical listing of command-line options
	Alphabetical list of reserved words
	Compiler messages
	General compiler messages
	Scanner messages.
	Parser messages
	Type checking errors
	Symbol handling
	Code generator messages
	Errors of assembling/linking stage
	Unit loading messages.
	Command-line handling errors
	Assembler reader errors.
	General assembler errors
	I386 specific errors
	m68k specific errors.

	Run time errors
	The Floating Point Coprocessor emulator
	A sample gdb.ini file
	Options and settings

