FPDoc:
Free Pascal code documenter: Reference manual

Reference manual for FPDoc
Document version 0.9
May 21, 2005

Micha®l Van Canneyt

Contents

1 Introduction 4
1.1 Aboutthisdocument e 4
12 ADOUtFPDOC. e 4
1.3 Gettingmoreinformation. 5

2 Compiling and Installing FPDoc 6
21 Compiling 6
22 Instalation 6

3 FPDoc usage 8
31 fpdoc 8
3.2 FPDoc command-lineoptionsreference. 9

321 content 9
322 destr ... 9
323 format. 10
324 help . . . e 10
325 hideprotected 10
326 html-search 10
327 IMPOrt. . .. e 11
328 NPUL Lo 11
329 lang 11
3210 latex-highlight 12
3211 OULPUL . . . o o 12
3212 package 12
3213 show-private e e e e 12
3214 warn-no-node 12
3.3 makeskel ... 12
331 introduction e e 12
34 Makeskel optionreference 13
341 destr ... 13
342 SUSEESCr . . . o 13

CONTENTS

343 disablearguments 13
344 disbleerors 13
345 disablefunction-results. 13
346 disableprivate 14
347 disableprotected 14
348 disableseeaso 14
349 emitclassseparator e e e e 14
3420 help . . . o e 14
3411 INPUE . . L e e 14
3412 1aNg 14
3413 OULPUL . . v o e e e e 14
3414 packageo e 15
3415 update 15

4 Thedescription le 16
41 Introduction e e e 16
4.2 Element namesand cross-referencingo e e 18
421 Elementnameconventions i 18
422 Crossreferencing: thelinktag 19

43 Tagreference 19
431 OVEIVIEW . . o o e e 19
432 b:formatbold 21
4.3.3 caption: Specifytablecaption. oL 21
434 code:formataspascalcode 21
435 descr:Descriptions 22
436 dd:denitiondata. 22
437 dl:denitionlist. 22
438 dt:denitionterm. 23
439 element: Identi er documentation 23
4310 errors: Errorsection. 23
4.3.11 fpdoc-description: Globaltag 24
4312 i:Formatitalics 24
4313 li:listelement 24
4314 link: Crossreference e 24
4.3.15 module: Unitreference 25
4316 ol : Numberedlist. 25
4317 p:Paragraph 26
4.3.18 package: Packagereference 26
4319 pre:lnserttextasis 27
4320 remark : formatasremark 27

CONTENTS

4.3.21 seealso: Crossreferencesection. L. 27
4322 short: Shortdescription 28
4323 table: Tablestart 28
4324 td:Tablecell 29
4325 th: Tableheader 29
4326 tr:tablerow 30
4327 u:Formatunderlined 30
4328 ul:bulletedlist 30
4329 var:variable 31

5 Generated output les. 32
51 HTMLOUPUL e 32
5.2 Laexoutput e 33

Chapter 1

| ntroduction

1.1 About thisdocument

Thisisthe reference manual for FPDoc, afree documentation tool for Pascal units. It describes the
usage of FPDoc and how to write documentation with it.

It attempts to be complete, but the tool is under continuous development, and so there may be some
dight differences between the documentation and the actual program. In case of discrepancy, the
sources of thetool arethe nal reference. A README or CHANGES le may be provided, and can

a so give some hints as to things which have changed. In case of doubt, these les or the sources are

authoritative.

1.2 About FPDoC

FPDoc isatool that combines a Pascal unit le and adescription lein XML format and produces
reference documentation for the unit. The reference documentation contains documentation for all
of the identi ers found in the unit’s interface section. The documentation is fully cross-referenced,
making it easy to navigate. It is also possible to refer to other documentation sets written with
FPDoc, making it possible to maintain larger documentation sets for large projects.

Contrary to some other documentation techniques, FPDoc does not require the presence of formatted
comments in the source code. It takes a source le and a documentation le (in XML format) and
merges these two together to a full documentation of the source. This means that the code doesn’t
get obfuscated with large pieces of comment, making it hard to read and understand.

FPDoc is package-oriented, which meansthat it considersunits as part of apackage. Documentation
for al unitsin a package can be generated in one run.

At the moment of writing, the documentation can be generated in the following formats:

HTML Plain HTML. Javascript is used to be able to show a small window with class properties or
class methods, but the generated HTML will work without JavaScript aswell. Style sheetsare
used to do the markup, so the output can be customised.

XHTML AsHTML, but using a more strict syntax.

LaTeX LaTeX les, which can be used with the fpc.sty le which comes with the Free Pascal doc-
umentation. From this output, PDF documents can be generated, and with the use of latex2rtf,
RTF or Winhelp les. Text les can also be generated.

CHAPTER 1. INTRODUCTION

Text plainascii text les. No cross-referencing exists. Other than that it resemblesthe LaTeX output
init's structure.

Man Unix man pages. Each function/procedure/method identi er is aman page. Constants are on a
separate page, as are types, variables and resourcestrings.

Plans exist to create direct RTF output as well.

1.3 Getting more information.

If the documentation doesn’t give an answer to your questions, you can obtain more information on
the Internet, on the following address:

http://fpdoc.freepascal .org/
It contains links to download all FPDoc related material.

Finally, if you think something should be added to this manual (entirely possible), please do not
hesitate and contact me at michael @freepascal .org.

http://fpdoc.freepascal.org
mailto:michael@freepascal.org

Chapter 2

Compiling and Installing FPDocC

2.1 Compiling
In order to compile FPDoc, the following things are needed:

1. The fpdoc sources. These can be downloaded from the FPDoC website.

2. The Free Pascal compiler sources. FPDoOC uses the scanner from the Free Pascal comiler to
scan the source le.

3. The FCL units (or their sources) should be installed.

4. fpcmakeis needed to create the make le for fpdoc. It comeswith Free Pascal, so if Free Pascal
isinstalled, there should be no problem.

5. To make new internationalisation support les, rstconv must beinstalled, and the GNU gettext
package.
Links to download all these programs can be found on the FPDoc website.

When the fpdoc sources have been unzipped, the Make le must be generated. Before generating the
make le, the location of the compiler source directory should beindicated. Inthe Make le.fpc le,
which hasawindowsini leformat, locatethe f pcdi r entry inthedef aul t s section:

fpedir=../..

and change it so it points to the top-level Free Pascal source directory.

After that, running fpcmake will produce the Make le , and running make should produce 2 exe-
cutables: fpdoc and makeskel.

2.2 Installation

When installing from sources, asimple

make install
cd intl
make i nstall

CHAPTER 2. COMPILING AND INSTALLING FPDOC

should completely install the documentation tool.

When installing from a archive with the binaries, it should be suf cient to copy the binaries to a
directory in the PATH.

To have fpdoc available in several languages, the language les should be installed in the following
directory on Unix systems:

/fusr/1ocal/share/l ocal e/ XX/ LC_NMESSAGES/
or
/usr/share/l ocal e/ XX/ LC_MESSAGES/

Depending on the setup. Here XX should be replaced by the locale identi er.

Chapter 3

FPDoOC usage

3.1 fpdoc

Using FPDoc isquite simple. It takes some command-line options, and based on these options, cre-
ates documentation. The command-line options can be given aslong or short options, asis common
for most GNU programs.

In principle, only 2 command-line options are needed:

package This speci es the name of the package for which documentation must be created. Exactly
one package option can be speci ed.

input The name of a unit le for which documentation should be generated. This can be asimple
lename, but can also contain some syntax options as they could be given to the Free Pascal
scanner. More than onei nput option can be given, and documentation will be generated for
all speci edinput les.

Some examples:

f pdoc --package=fcl --input=crt.pp

Thiswill scan the crt.pp le and generate documentation for it in adirectory called fcl.
fpdoc --package=fcl --input="-1../inc -S2 -DDebug cl asses. pp’

Thiswill scanthe le classes.pp, with the DEBUG symbol de ned, the scanner will look for include
lesinthe ../inc directory, and OBJ FPC-mode syntax will be accepted.

(for more information about these options, see the Free Pascal compiler user’s guide)

With the above commands, a set of documentation leswill be generatedin HTML format (thisisthe
standard). There will be no description of any of the identi ers found in the unit’'s interface section,
but al identi ers declarations will be present in the documentation.

The actual documentation (i.e. the description of each of the identi ers) residesin adescription le,
which can be speci ed with the descr option:

f pdoc --package=fcl --descr=crt.xm --input=crt.pp

This will scan the crt.pp le and generate documentation for it, using the descriptions found in the
lecrt.xml le. The documentation will be written in adirectory called fcl.

CHAPTER 3. FPDOC USAGE

f pdoc --package=fcl --descr=classes.xnl \
--input="-1../inc -S2 -DDebug cl asses. pp’

All options should be given on one line. Thiswill scan the le classes.pp, with the DEBUG symbol
de ned, the scanner will look for include lesinthe ../inc directory, and OBJFPC-mode syntax will
be accepted.

More than oneinput le or description le can be given:

f pdoc --package=fcl --descr=classes.xm --descr=process.xn \
--input="-1../inc -S2 -DDebug cl asses.pp’ \
--input="-1../inc -S2 -DDebug process. pp’

Here, documentation will be generated for 2 units: classes and pr ocess
The format of the description leisdiscussed in the next chapter.
Other formats can be generated, such as latex:

fpdoc --format=latex --package=fcl \

--descr=cl asses. xm --descr=process. xm\
--input="-1../inc -S2 -DDebug cl asses.pp’ \
--input="-1../inc -S2 -DDebug process. pp’

Thiswill generatealLaTeX lecaled fcl.tex, which contains the documentation of the units classes
and pr ocess. Thelatex le contains no document preamble, it starts with a chapter command. It
is meant to be included (using the LaTeX include command) in alatex document with a preamble.

The output of FPDoC can be further customised by several command-line options, which will be
explained in the next section.

3.2 FPDoc command-line optionsreference

In this section al FPDoc command-line options are explained.

3.2.1 content

This option tells FPDoOC to generate a content le. A content le contains alist of al the possible
anchors (labels) in the generated documentation le, and can be used to create cross-links in doc-
umentation for units in other packages, using the counterpart of the content option, the i mport
option (section 3.2.7, page 11).

3.2.2 descr

This option speci es the name of a description le that contains the actual documentation for the
unit. This option can be given several times, for several description les. The le will be searched
relative to the current directory. No extension is added to the e, it should be a complete |ename.

If the lename starts with an’at’ sign @ then it isinterpreted as atext le which contains a list of
Ilenames, one per line. Each of these leswill be added to the list of description les.

Thenodesinthe description leswill be mergedinto one big tree. This meansthat the documentation
can be divided over multiple les. When merging the description les, nodes that occur twice will
end up only once in the big node tree: the last node will always be the node that ends up in the parse
tree. This means that the order of the various input commands or the ordering of the lesin the le
list isimportant.

CHAPTER 3. FPDOC USAGE

Examples:

--descr=crt.xm

will tell FPDoc to read documentation from crt.xml, while
--descr=@cl .| st

will tell FPDoc toread |enames from fcl.Ist; each of the lenames found in it will be added to the
list of lesto be scanned for descriptions.

3.2.3 format

Speci es the output format in which the documentation will be generated. Currently, the following
formats are known:

htm Plain HTML with 8.3 conforming lenames.

html HTML with long lenames.

xhtml XHTML with long lenames.

latex LaTex, which usesthe fpc.sty style used by the Free Pascal documentation.
xml-struct Structured XML.

3.24 help

Gives ashort copyright notice.

3.2.5 hide-protected

By default, the documentation will include descriptions and listings of protected elds and methods
in classes or objects. This option changes this behaviour; if it is speci ed, no documentation will
be generated for these methods. Note that public methods or properties that refer to these protected
methods will then have adangling (i.e. unavailable) link.

3.2.6 html-search

This option can be used when generating HTML documentation, to specify an url that can be used
to search in the generated documentation. The URL will beincluded in the header of each generated
page with a Sear ch caption. The option isignored for non-html output formats.

FPDoc does not generate a search page, this should be made by some external tool. Only the url to
such a page can be speci ed.

Example:

--htm -search=../search. htnd

10

CHAPTER 3. FPDOC USAGE

3.2.7 import

Import atable of contents le, generated by FPD oc for another package with the cont ent option
(section 3.2.1, page 9). This option can be used to refer to documentation nodes in documentation
sets for other packages. The argument consists of two parts: a lename, and alink pre x.

The lenameisthe name of the lethat will beimported. Thelink pre x isapre x that will be made
to each HTML link; this needs to be done to be able to place the lesin different directories.

Example:
--inmport=../fcl.cnt,../fcl

Thiswill read the lefcl.cnt in the parent directory. For HTML documentation, all linksto itemsin
thefcl.cnt le, thelink will be prepended with ../fcl.

This allows a setup where al packages have their own subdirectory of a common documentation
directory, and all content les reside in the main documentation directory, as e.g. in the following
directory tree:

/ docs/ f cl
/ f pdoc

/ f pgui
[f pgf x

[fpiny

The lefcl.cnt would resideinthe docs directory. Similarly, for each package a contents le xxx.cnt
could be placesin that directory. Inside the subdirectory, commands as the above could be used to
provide links to other documentation packages.

Note that for Latex documentation, this option isignored.

3.2.8 input

This option tells FPDoc what input e should be used. The argument can be just a lename, but
can also be a complete compiler command-line with options that concern the scanning of the Pascal
source: de nes, include les, syntax options, as they would be speci ed to the Free Pascal compiler
when compiling the le. If a complete command is used, then it should be enclosed in single or
double quotes, so the shell will not break them in parts.

Itis possibleto specify multiple input commands; they will be treated one by one, and documentation
will be generated for each of the processed les.

3.2.9 lang

Select the language for the generated documentation. Thiswill change all header namesto the equiv-
alent in the speci ed language. The documentation itself will not be trandated, only the captions and
headers used in the text.

Currently, valid choices are

de German.
fr French.

nl Dutch.

Example:

11

CHAPTER 3. FPDOC USAGE

- -l ang=de

Will select German language for headers.

The language les should be installed correctly for this option to work. See the section on installing
to check whether the languages are installed correctly.

3.2.10 latex-highlight

Switches on an internal latex syntax highlighter. This is not yet implemented. By default, syntax
highlighting is provided by the syntax package that comes with Free Pascal.

3.2.11 output

This option tells FPDoc where the output le should be generated. How this option is interpreted
depends on the format that is used. For latex, thisisinterpreted asthe lenamefor thetex le. For al
other formats, this is interpreted as the directory where all documentation les will be written. The
directory will be created if it does not yet exist.

The lename or directory nameis interpreted as relative to the current directory.
Example:

--format=htm --output=docs/cl asses
will generate HTML documentation in the directory docs/classes.
--format =l at ex --output=docs/cl asses. tex

will generate latex documentation in the le docs/classes.

3.2.12 package

This option speci es the name of the package to be used. The package name will also be used as a
default for the out put option (section 3.2.11, page 12).

3.2.13 show-private

By default, no documentation is generated for private methods or elds of classes or objects. This
option causes FPDoOC to generate documentation for these methods and elds as well.

3.2.14 warn-no-node

If this option is given, then fpdoc will emit awarning if it cannot nd a documentation node for some
identi er. This can be used to see whether the description les are up-to-date, or whether they must
be updated.

3.3 makeskel
3.3.1 introduction
The makeskel tool can be used to generate an empty description le for a unit. The description le

will contain an element node for each identi er in the interface section of the Pascal unit.

12

CHAPTER 3. FPDOC USAGE

It's usage is quite straightforward: the name of an input le (one or more) must be speci ed (as for
FPDoC), an output le, and the name of a package:

nmakeskel --package=rtl --input=crt.pp --output=crt.xm

Thiswill read the le crt.pp and will create a le crt.xml which contains empty nodes for all identi-
ersfoundin crt.pp, al inapackage namedrt| .

Thei nput option can be given more than once, as for the fpdoc command:
makeskel --input="-Sn systempp’ --input=crt.pp --output=rtl.xmn

As can be seen, the i nput option can contain some compiler options, as is the case for FPDoC.
The above command will processthe les system.ppandcrt . pp, and will create element tagsfor
theidenti ersin both unitsinthe le rtl.xm .

The output of makeskel isavalid, empty description le. It will contain a module tag for each unit
speci ed, and each module will have element tags for each identi er in the unit.

Each element tag will by default contain short, descr, errors and seealso tags, but this can be
customised.

3.4 Makeskel option reference

The output of makeskel can be customised using several options, which are discussed below.

3.4.1 descr

3.4.2 suse:descr

When in update mode (section 3.4.15, page 15), this opion can be used to add an existing documen-
tation le, asfor fpdoc. Nodesthat are already in one of the existing documentation leswill not be
written to the output le.

3.4.3 disable-arguments

By default, for each function or procedure argument, a element tag will be generated. This option
disables this behaviour: no element tags will be generated for procedure and function arguments.

3.4.4 disable-errors

If thisoptionisspeci ed, no errorstag will be generated in the element nodes. By default al element
tags contain aerror s node.

Theerrorstagisignored when it is not needed; Normally, an errorstag is only needed for procedure
and function elements.

3.4.5 disable-function-results

If this option is speci ed, then no element tag will be generated for function results. By defaullt,
makeskel will generate a result node for each function in the interface section. The result node is
used in the documentation to document the return value of the function under a separate heading in
the documentation page. Specifying this option suppresses the generation of the element tag for the
function result.

13

CHAPTER 3. FPDOC USAGE

3.4.6 disable-private

If this option is speci ed, then no element tags will be generated for private methods or elds of
classes or objects. The default behaviour is to generate nodes for private methods or elds. It can be
used to generate a skeleton for end-user and devel oper documentation.

3.4.7 disable-protected

If this option is speci ed, then no element tags will be generated for protected and private methods
or eldsof classes or objects. The default isto generate nodes for protected methods or elds. If this
option is given, the option - di sabl e- pri vat e isimplied. It can be used to generate end-user-
only documentation for classes.

3.4.8 disable-seealso

If this option is speci ed, no seealso tag will be generated in the element nodes. By default all
element tags contain a seeal so tag.

3.4.9 emitclassseparator

When this option is speci ed, at the beginning of the elements for the documentation of a class, a
comment tag is emitted which contains a separator text. This can be useful to separate documentation
of different classes and make the description |e more understandable.

3.4.10 help
Makeskel emits a short copyright notice and exits when this option is speci ed.

3.4.11 input

This option is identical in meaning and functionality as the i nput option for FPDoc. (section
3.2.8, page 11) It speci es the Pascal unit source le that will be scanned and for which a skeleton
description le will be generated. Multiple i nput options can be given, and element tags will be
written for al the les, in one big output le.

3.4.12 lang

This option is used to specify the language for messages emitted by makeskel. The supported
languages are identical to the onesfor FPDoOC:

de German.
fr French.

nl Dutch.

3.4.13 output

This option speci es the name of the output le. A full lename must be given, no extension will be
added. If this option is omitted, the output will be sent to standard outpuit.

When using update mode, the output |e name should not appear in the list of existing documentation
les. The makeskel program will do some elementary checks on this.

14

CHAPTER 3. FPDOC USAGE

3.4.14 package

This option speci es the package name that will be used when generating the skeleton. It isamanda-
tory option.

3.4.15 update

This option tells makeskel to create an update le: it will read description les (section 3.2.2, page
9) and will only create documentation nodes for identi ers which do not yet have a documentation
node in the read documentation les. The output lein this case can be merged with one (or more) of
the documentation les: it's name should not appear in the list of existing documentation les. The
makeskel program will do some elementary checks on this.

15

Chapter 4

Thedescription le

4.1 Introduction

The description le is a XML document, which means that it is a kind of HTML or SGML like
format, however it is more structured than HTML, making it easier to parse - and makes it easier to
connect or merge it with a Pascal source le. Since the allowed syntax uses alot of HTML tags, this
makes it easy to write code for those that are familiar with writing HTML.

More information about the XML format, SGML and HTML can be found on the website of the W3
(World Wide Web) consortium: http://www.w3.org/

The remaining of this chapter assumes a basic knowledge of tags, their attributes and markup lan-
guage, so these termswill not be explained here.

The minimal documentation le would look something like this:

<?xm version="1.0" encodi ng="1S08859-1"?>
<f pdoc- descri pti ons>

<package nane="fpc">

<modul e nanme="C asses" >

</ modul e>

</ f pdoc-descri ption>

</ package>

The header xml tag is mandatory, and indicates that the le contains a documentation XML docu-
ment.

Inside the document, one or more top-level fpdoc-descriptions tags may appear. Each of these tags
can contain one or more package tags, which must have aname attribute. The name attribute will be
used by fpdoc to select the documentation nodes.

Inside a package tag, one or more module tags may appear. there should be one module tag per unit
that should be documented. The value of the name attribute of the nodul e should be the name of
the unit for which the module tag contains the documentation. The value of the nane attribute is
case insensitive, i.e.

<nmpodul e nane="CRT" >

can be used for the documentation of the crt unit.

Asiit is above, the documentation description does not do much. To write real documentation, the
moduletag must be 1led with the documentation for each identi er that appearsin the unit interface
header.

16

http://www.w3.org

CHAPTER 4. THE DESCRIPTION FILE

For each identi er in the unit interface header, the module should contain a tag that documents the
identi er: thisisthe element tag. The name attribute of the element tag links the documentation to
the identi er: the name attribute should have as value the fully quali ed name of theidenti er in the
unit.

For example, to document the type

Type
MyEnum = (meOne, neTwo, neThr ee) ;

an element tag called myenumshould exist:

<el ement nanme="nyenuni >
</ el enent >

But also for each of the three enumerated values an element tag should exist:

<el enent name="nyenum nmeCne" >
</ el ement >

<el enent nanme="nyenum nmeTwo" >
</ el ement >

<el enent name="nyenum neThree" >
</ el enent >

As it can be seen, the names of the identi ers follow a hierarchical structure. More about thisin the
next section.

Now the tags for the types are present, all that should be doneisto Il it with the actual description.
For this, several tags can be placed inside a element tag. The most important tag is the descr tag.
The contents of the descr tag will be used to describe atype, function, constant or variable:

<el ement nane="nyenuni' >

<descr >

The MyEnumtype is a sinple enunmeration type which is not
really useful, except for denonstration purposes.

</ descr >

</ el enent >

A second important tag isthe short tag. It should contain a short description of the identi er, prefer-
ably adescription that tson oneline. The short tag will be used in various overviews, at the top of
apagein the HTML documentation (a synopsis) or will be used instead of the descr tag if that one
is not available. It can also be used in different other cases: For instance the different values of an
enumeration type will be laid out in atable, using the short description:

<el enent name="nyenum nmeCne" >

<short>The first enuneration val ue</short>
</ el enent >

<el enent nanme="nyenum nmeTwo" >

<short >The second enuneration val ue</short>
</ el enent >

<el ement nanme="nmyenum meThr ee" >

<short>The third enuneration val ue</short >
</ el enent >

Thiswill be converted to atable looking more or less like this:

17

CHAPTER 4. THE DESCRIPTION FILE

meOne The rst enumeration value
meTwo The second enumeration value
meThree Thethird enumeration value

For functions and procedures, alist of possible error conditions can be documented inside aerrors
tag. Thistag is equivalent to the descr tag, but is placed under a different heading in the generated
documentation.

Finally, to cross-reference between related functions, types or classes, a seeal so tag isal so introduced.
Thiswill be used to lay out a series of links to related information. This tag can only have sub-tags
which arel i nk tags. For more about the link tag, seelink (24).

To add a section or page of documentation that is not directly related to asingle identi er in a unit,
atopic tag can be used. This tag can appear inside apackage or nodul e tag, and can contain a
short or descr tag. The contents of the short tag will be used for the title of the section or page. In
on-line formats, a short list of related topics will appear in the package or module page, with links
to the pages that contain the text of the topics. In alinear format, the topic sections will be inserted
before the description of al identi ers.

If the topic appearsin apackagetag, then it can be nested: 2 levels of topics may be used. Thisisnot
so for topics inside a module: they can not be nested (the level of nesting in alinear documentation
format is limited).

The following is an example of avalid topic tag:

<nodul e name="CRT" >

<t opi ¢ name="Usi ngKeyboar d" >

<short >Usi ng the keyboard functions</short>

<descr >

To use the keyboard functions of the CRT unit, one...
</ descr>

</topic>

Topic nodes can be useful to add "how to’ sections to a unit, or to provide general IDE help.

4.2 Element names and cross-referencing

42.1 Element name conventions

As mentioned in the previous section, the el enent tag's name attribute is hierarchical. All levels
in the hierarchy are denoted by adot (.) in the name attribute.

As shown in the previous example, for an enumerated type, the various enumeration constants can
be documented by specifying their name asenummarne. const namne. For example, given the type

Type
MyEnum = (meOne, neTwo, neThr ee) ;

The various enumeration values can be documented using the element names MyEnum neOne,
MyEnum meTwo and MyEnum nmeThr ee:

<el ement nane="nyenum nmeOne" >
</ el ement >

<el enent nanme="nyenum nmeTwo" >
</ el ement >

<el ement nanme="nmyenum meThr ee" >
</ el enent >

18

CHAPTER 4. THE DESCRIPTION FILE

Note that the casing of the name attribute need not be the same as the casing of the declaration.
This hierarchical structure can be used for al non-simple types:
e Enumeration type values.

e Fieldsin records, objects, classes. For nested record de nitions, multiple levels are possiblein
the name.

e Methods of classes and objects.

Properties of classes.

Function and procedure arguments.

Function results. The name is always the function name followed by Resul t .

4.2.2 Crossreferencing: the |l i nk tag

To refer to another point in the documentation (arelated function, class or whatever), alink tag exists.
Thel i nk tag takes as a sole attribute a target id attribute. The link tag usually encloses a piece of
text. Inthe HTML version of the documentation, this piece of text will function as a hyperlink. In
the latex version, a page number reference will be printed.

The id attribute contains the name of an element to which the link refers. The name is not case
sensitive, but it must be afully quali ed name.

An example of the link type would be:

The <link id="MEnunt>M/Enunx/|ink> type is a sinple type.
The link attribute also has a short form:

The <link id="MyEnun'/> type is a sinple type.

In the short form, the value of the id attribute will be used as the text which will be hyperlinked. This
is especially useful in the seeal so tag.

To refer to atype in another unit, the unit name must be prepended to the id attribute:
<link id="myunit.nyenunt/>

will link to the myenumtype in a unit named myunit.

To refer to a node in the documentation of another package, the package name should be prepended
to the id attribute, and it should be prepended with the hash symbol (#):

<link id="#fcl.classes.sofronbegi nning"/>
will link to the constant sof r onmbegi nni ng in the classes unit of the FCL reference documen-

tation. Note that for this to work correctly, the contents e which was created when generating the
documentation of the type must be imported correctly (seethei nport option).

4.3 Tagreference

4.3.1 Overview
The tags can roughly be divided in 2 groups:

19

CHAPTER 4. THE DESCRIPTION FILE

1. Documentation structure tags. These are needed for fpdoc to do it's work. They determine

what elements are documented. Seetable (4.1)

2. Text structure and formartting tags. These tags indicate blocks of text, such as paragraphs,
tables, lists and remarks, but also specify formatting: apply formatting (make-up) to the text,
or to provide links to other parts of the text. These mostly occur in text structure tags. See

table (4.2)
Table 4.1: Documentation structure tags
Tag Description Page
descr Element description 22
element Identi er documentation 23
errors Error section 23
fpdoc-description Global tag 24
module Unit tag 25
package Package global tab 26
seealso Cross-reference section 27
short Short description 28
topic Topic page 29
Table 4.2: Text formatting tags
Tag Description Page
b Format bold 21
caption Specify table caption 21
code Syntax highlight code 21
dd de nition data 22
d denition list 22
dt De nition term 23
i format italics 24
li list element 24
link Cross-reference 24
ol numbered list 25
p paragraph 26
pre Preformatted text 27
remark remark paragraph 27
table Table 28
td Table cell 29
th Table header 29
tr Table row 30
u format underlined 30
ul bulleted list 30
var format as variable 31

The nodes for formatting a text resemble closely the basic HTML formatting tags with the following

exceptions:

e Each opening tag must have a corresponding closing tag.

e Tags are case sensitive.

e Tables and paragraphs are at the same level, i.e. atable cannot occur inside a paragraph. The

sameistruefor al 'structural’ tags such aslists,

20

CHAPTER 4. THE DESCRIPTION FILE

Also, if specia formatting tags such as a table or lists are inserted, then the remaining text must be
inside a paragraph tag. This means that the following iswrong:

<descr >

Sone begi nni ng text

A list itemx/Ili>
</ ol >

sone endi ng text

</ descr >

Instead, the correct XML should be

<descr >

<p>Some begi nni ng text</p>

Alist itenx/li>

</ ol >

<p>sone endi ng text</p>

</ descr >

4.3.2 b: format bold

Thistag will cause the text inside it to be formatted using a bold font.
Example:

Nor mal text Bold text normal text.

will be formatted as:
Normal text Bold text normal text.

Seedso: i (24), u (30).

4.3.3 caption : Specify table caption

Thistag can occur inside atable tag and serves to set the table caption.
Example

<t abl e>

<caption>This caption will end up above the tabl e</caption>
<t h><t d>Col umm 1</t d><t d>Col um 2</td></th>

</tabl e>

See also: table (28)

4.3.4 code: format as pascal code

The code tag serves to insert Pascal code into the text. When possible this code will be highlighted
in the output. It can be used to put highlighted Pascal code in the documentation of some identi er.
It can occur inside descr or errorstags.

Note that any text surrounding the code tag should be placed in paragraph tags p.
Example:

21

CHAPTER 4. THE DESCRIPTION FILE

<code>
Wth Strings do
For i:=Count-1 downto O do
Del ete(i);
</ code>

Seedlso: pre (27), p (26)

4.3.5 descr : Descriptions

Thisisthe actual documentation tag. The contents of thistag will be written as the documentation of
the element. It can contain any mixture of text and markup tags. The descr tag can only occur inside
aelement or module.

Example:
<el enent nanme="M/Enyni' >

<descr>Myenumis a sinple enuneration type</descr>
</ el emrent >

See also: element (23), short (28), errors (23), seealso (27)

4.3.6 dd: denition data.

The dd tag is used to denote the de nition of aterm in adenition list. 1t can occur only inside a
denition list tag (dl), after ade nition term (dt) tag. It's usageisidentical to theonein HTML.

Example:

<dl >
<dt >FPC</ dt ><dd>st ands for Free Pascal Conpiler.</dd>
</dl >

Will be typeset as
FPC standsfor Free Pasca Compiler.

Seeaso: dl (22), dt (23), ol (25), ul (30)

4.3.7 dl: denition list.

De nition lists are meant to type a set of terms together with their explanation. It's usage isidentical
to the one in HTML, with the exception that it cannot occur inside ordinary text: surrounding text
should always be enclosed in paragraph tags.

Example:

<d| >

<dt >neOne</ dt ><dd>Fi rst el enent of the enuneration type.</dd>
<dt >meTwo</ dt ><dd>Second el enent of the enuneration type.</dd>
<dt >neThr ee</ dt ><dd>Thir el enent of the enuneration type.</dd>
</dl >

Will be typeset as

22

CHAPTER 4. THE DESCRIPTION FILE

meOne First element of the enumeration type.
meTwo Second element of the enumeration type.

meThree Third element of the enumeration type.

Seedlso: dt (23), dd (22), ol (25), ul (30)

4.3.8 dt: denition term.

The dt tag isused in de nition lists to enclose the term for which ade nition is presented. It's usage
isidentical to theusagein HTML.

Example:

<dl >
<dt >FPC</ dt ><dd>st ands for Free Pascal Conpil er.</dd>
</dl >

Will be typeset as
FPC standsfor Free Pascal Compiler.

Seedso: dl (22), dd (22), ol (25), ul (30)

4.3.9 element: Identi er documentation

The element contains the documentation for an identi er in aunit. It should occur insidea nodul e
tag. It can contain 4 tags:

short For a one-line description of the identi er. s used as a header or is used in overviews of
constants, types, variables or classes.

descr Contains the actual description of the identi er.

errors For functions an procedures this can be used to describe error conditions. It will be put in a
separate section below the description section.

seealso Used to refer to other nodes. will be typeset in a separate section.

The element tag should have at least the name attribute, it is used to link the element node to the
actual identi er in the Pascal unit. Other attributes may be added in future.

Example:

<el emrent nane="WEnyni' >

<descr>Myenumis a sinple enuneration type</descr>
</ el enent >

See also: descr (22), short (28), errors (23), seealso (27)

4.3.10 errors: Error section.

The errorstag is used to document any errors that can occur when calling a function or procedure.
it is placed in a different section in the generated documentation. It occurs inside a element tag, at
the same level asadescr or short tag. It's contents can be any text or formatting tag.

Example:

23

CHAPTER 4. THE DESCRIPTION FILE

<el ement nanme="MDanger ousFuncti on">

<descr >MyDanger ousFunction is a dangerous function</descr>
<errors>Wen MyDangerousFunction fails, all is lost</errors>
</ el ement >

See also: descr (22), short (28), element (23), seealso (27)

4.3.11 fpdoc-description : Global tag

The fpdoc-description tag is the topmost tag in a description le. It contains a series of package
tags, one for each package that is described in the le.

See also: package (26)

4.3.12 i: Format italics
Thei tag will cause its contents to be typeset initalics. It can occur mixed with any text.
Example:

Normal text <i>italic text</i> nornmal text.

will be formatted as:
Normal text italic text normal text.

See also: b (21), u (30)

4.3.13 li: list element

Thetag li denotes an element inaol or ul list. The usage isthe same as for it'sHTML counterpart:
It can occur only inside one of the ol or ul list tags. It's contents may be arbitrary text and formatting
tags, contrary to HTML tags, theli tag always must have a closing tag. Note that it cannot be used in
adenition list (dl (22)).

Example:

First itemin the list</|i>
Second itemin the list</|i>
</ ul >

Will be typeset as

e Firstiteminthelist.

e Second itemin thelist.

See also: ol (25), ul (30).

4.3.14 link : Cross-reference

Thelink tag isused to insert areference to an element inside some piece of text or inside the seealso
section. It issimilar in functionality to the

sone |inked text

24

CHAPTER 4. THE DESCRIPTION FILE

construct in HTML.

The mandatory id attribute of the link tag should have the name of an element tag in it. This name
is not case sensitive. FPDoc will issue awarning if it cannot nd a matching name. It will look for
matching namesin the current le, and in all content lesthat have been speci ed withthe i mport
command-line option.

The link tag can exist in 2 forms: one with separate closing tag, surrounding a piece of text, one
without separate closing tag. If a piece of text is surrounded by the link tag, then the text will be
converted to a hyperlink in the HTML documentation. If there is no surrounded text, then the value
of theid attribute will be used as the text. This means that

<link id="TStream>TStreanx/!| i nk>
and
<link id="TStreanl/>

are completely equivalent.
Example:

The <link id="TStringlist">stringlist</link> class is a descendent of the
<link id="TStrings"/> cl ass.

See also: element (23), thei nport option (section 3.2.7, page 11).

4.3.15 module : Unit reference

The module tag encloses al element tags for a unit. It can contain only element tags for all iden-
ti ersin the unit and a descr tag describing the unit itself. The module tag should occur inside a
package tag.

The name attribute should have as a value the name of the unit which is described by the module.
This name is not case sensitive.

Example:

<nodul e nanme="cl asses" >

<descr>

The classes unit contains basic class definitions for the FCL.
</ descr>

</ nodul e>

See also: package (26), descr (22), element (23)

4.3.16 ol : Numbered list.

Theol tag startsanumbered list. It can contain only li (24) tags, which denote the various elementsin
thelist. Each item will be preceded by a number. The ol tag can occur inside a text, but surrounding
text should always be enclosed in a p (26) paragraph tag, i.e. an ol tag should occur always at the
samelevel asap tag.

Example:

<p> sone text before</p>

25

CHAPTER 4. THE DESCRIPTION FILE

First itemin the list</|i>
Second itemin the list</|i>
</ ol >

Will be typeset as:
some text before

1. Firstiteminthelist.

2. Seconditeminthelist.

See dso: li (24), ul (30).

4.3.17 p: Paragraph

The p tag isthe paragraph tag. Every description text should be enclosed in ap tag. Only when there
is only one paragraph (and no lists or tables or remarks) in a description node, then the p tag may be
skipped.

Note that if a description node contains atable, pre, code or any list tag, then the text surrounding
these tags must be put inside a p paragraph tag. Thisis different from the behaviour in HTML.

The paragraph tag must always have an opening tag and a closing tag, unlike html where only the
opening tag may be present.

Example:

<descr>

This is a paragraph which need not be surrounded by paragraph tags.
</ descr>

<descr >

<p>

This is the first paragraph.
</ p>

<p>

This is the second paragraph.
</ p>

</ descr>

See also: table (28), dI (22), remark (27),code (21), ol (25),ul (30),0l (25)

4.3.18 package : Package reference

The package tag indicates the package for which the description le contains documentation. A
package is a collection of units which are logically grouped together (for a library, program, com-
ponent suites). The name attribute of the package tag will be used to select the package node in
the description le: Only the package node with name as speci ed by the package command-line
option will be used when generating documentation. All other package nodes will be ignored.

The package node must always reside in afpdoc-description node. It can contain adescr node, and
various module nodes, one node per unit in the package.

See also: fpdocdescription (24), module (25), descr (22)

26

CHAPTER 4. THE DESCRIPTION FILE

4.3.19 pre: Insert text as-is

The pre tag can be used to insert arbitrary text in the documentation. The text will not be formatted
in any way, and will be displayed as it is encountered in the description node. It is functionally
equivalent to the pretag in HTML.

Note that if there istext surrounding the pre tag, it should be placed inside a p paragraph tag.
Example:
<pre>
This is sone text.
This is sone nore text

And yet nore text...
</ pre>

Thiswill be typeset as:

This is sone text.
This is some nore text

And yet nore text...

See also: code (21), p (26)

4.3.20 remark : format as remark

A remark tag can be used to make a paragraph stand out. The remark is equivalent to the p tag, but
it's contents is formatted in away that makes it stand out from the rest of the text.

Note that any text before or after the remark tag must be enclosed in paragraph (p) tegs.

Example:

<p>Nor rmal text.</p>

<r emar k>

This text will stand out.
<exanpl e>

<p>Agai n nornmal text.</p>

Will be formatted as
Normal text.
Remark: Thistext will stand out.
Again normal text.
See also: p (26), code (21), pre (27)

4.3.21 seealso : Cross-reference section

The seealso section can occur inside any element tag, and will be used to create a list of cross-
references. The contents of the seealso tag is alist of link tags. No other text is allowed inside this
tag. Note that both the long and short form if the link tag may be used.

Example:

27

CHAPTER 4. THE DESCRIPTION FILE

<seeal so>

<link id="TStrings"/>

<link id="TStringList.Create">Create</I|ink>
</ seeal so>

See also: link (24), element (23)

4.3.22 short: Short description

Theshort description isused to give a short description of an identi er. If possible, the description
should t on asingle line of text. The contents of thistag will be used for the following purposes:

e Used asthe synopsis on a page that describes an identi er.

e Used in overviews of constants, types, variables, record elds, functions and procedures,
classes, and for method and property listings of classes.

e Replacesthe descr tag in an element if no descr tag is present.

e In the description of an enumerated type, the enumeration values are typeset in a table, each
row containing the name of the value and the short description.

e In the description of a function or procedure that accepts arguments, the arguments are fol-
lowed by their short description.

e In the declaration of a class or record, each method, eld or property is followed by the short
description.

Example:

<el enent name="M/Enum nmeCne" >
<short>First el ement of MyEnunx/short>
</ el ement >

See also: element (23), descr (22)

4.3.23 table : Table start

Thet abl e tag startsatable, asin HTML. A table can contain tr (table row), th (table header row)
or caption tags. Any text surrounding the table must be enclosed in paragraph tags (p).

Example:

<t abl e>
<capti on>
<var >TALi gnnment </ var > val ues and their neanings.
</ caption>
<t h><t d>Val ue</ t d><t d>Meani ng</t d></t h>
<tr>
<td><var>talLeftJustify</var></td>
<td>Text is displayed aligned to the left.</td>
</tr>
<tr>
<t d><var >t aRi ght Justi fy</var></td>
<td>Text is displayed aligned to the right</td>

28

CHAPTER 4. THE DESCRIPTION FILE

</[tr>
<tr>
<t d><var >t aCent er </ var ></t d>
<td>Text is displayed centred. </td>
</[tr>
</tabl e>

Will be formatted approximately as follows:

Value Meaning

taLeftJustify Text is displayed aligned to the left.
taRi ght Justify Textisdisplayed aligned to theright
t aCent er Text is displayed centred.

See also: th (29), caption (21), tr (30), p (26)

4.3.24 td: Table cell

The td tag is used to denote one cell in atable. It occursinside atr or th tag, and can contain any
text and formatting tags.

Example:

<t abl e>

<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</t abl e>

Will be formatted approximately as

cdl (1,1) Cdl (2,)
cdl (1,2) Cdl (2,2)

See dso: table (28), th (29), tr (30)

4.3.25 th: Table header

The t h table header tag is used to denote the rst row(s) of a table: It (they) will be made up
differently from the other rows in the table. Exactly how it is made up depends on the format. In
printed documentation (latex) aline will be drawn under the row. In HTML, the font and background
may be formatted differently.

Theth tag can only occur inside atable tag, and can contain only td tags.
Example:

<t abl e>

<th><td>Cel |l (1,1)</td><td>Cell (2,1)</td></th>
<tr><td>Cel |l (1,2)</td><td>Cell (2,2)</td></tr>
</tabl e>

Will be formatted approximately as

cdl (1,1) Cdl (2,)
Cdi(1,2) Cdl(22)

See also: tr (30), table (28)

The topic tag starts a topic page or section. A topic page or section is not linked to an identi er
in some unit: it exists by itself. It must be inside a package or module tag. It must have a name

29

CHAPTER 4. THE DESCRIPTION FILE

attribute (for cross-referencing). If it appears inside a package, it can be nested: a topic may be
inside another topic tag.

<nmodul e nane="CRT" >

<t opi ¢ name="Usi ngKeyboar d" >

<short >Usi ng t he keyboard functions</short>

<descr>

To use the keyboard functions of the CRT unit, one...
</ descr >

</t opi c>

4.3.26 tr: table row

Thetr tag denotes arow in atable. It works the same asin HTML. It can occur only in atable tag,
and should contain only td table data tags.

Example:

<t abl e>

<tr><td>Cell (1,1)</td><td>Cell (2,1)</td></tr>
<tr><td>Cell (1,2)</td><td>Cell (2,2)</td></tr>
</t abl e>

Will be formatted approximately as

cdl (1,1) Cdl (2,)
cdl (1,2) Cdl (2,2)

See dlso: table (28), th (29), td (29)

4.3.27 u: Format underlined
Example:

Nor mal text <u>underlined text</u> normal text.

will be formatted as:
Normal text underlined text normal text.

Seedso: i (24), b (2).

4.3.28 ul : bulleted list

The ul tag starts a bulleted list. This works as under HTML, with the exception that any text
surrounding the list must be enclosed in paragraph tags (p). The list elements should be enclosed in
li tags.

Example:

<p> sone text before</p>

First itemin the list
Second itemin the list</I|i>
</ ol >

30

CHAPTER 4. THE DESCRIPTION FILE

Will be typeset as:
some text before

e Firstiteminthelist.

e Seconditeminthelist.

See dso: i (24), ol (25).

4.3.29 var : variable

Thevar tag is used to mark apiece of text as avariable (or, more general, as an identi er). It will be
typeset differently from the surrounding text. Exactly how thisis done depends on the output format.

Example:
The <var>ltemnms</var> property gives indexed access to...

Will be typeset as
Thel t ens property gives indexed accessto...
Seealso: b (21), u (30), i (24), code (21)

31

Chapter 5

Generated output les.

5.1 HTML output

The HTML output consists of the following les, per unit:

1. A genera unit description with the contents of the module's descr tag. The uses clause is
documented here as well. All unitsin the uses clause together with their short description
tagsaretypeset in atable.

A listing of al constants in the unit.

A listing of al typesin the unit (except classes).

2.

3.

4. A listing of all variablesin the unit.

5. A ligting of al functions/procedures in the unit.
6.

A listing of al classesin the unit.

All these overviews are hyperlinked to pages which contain the documentation of each identi er.

Each page starts with the name of theidenti er, plus a synopsis (made from the short tag’s contents).
After that follows the declaration, and the description. The description is Iled with the descr node
of theidenti ers element tag.

If an errors tag was present, an 'Errors section follows the description. Similarly, if thereis a
seealso tag, a’ See also’ section with cross-reference links is made.

For classes, the declaration contains hyperlinks to separate pages which document all the members
of the class. Each member in the declaration is followed by the short tag of the member’s element
tag, if one exists. Asan extra, the class hierarchy is given, pluslinksto pop-up pages (if JavaScript is
available, otherwise they are normal links) which contain alphabetical or hierarchical listings of the
methods, elds or properties of the class.

For functions and procedures, the declaration will be typeset in such away that all function arguments
(if they are present) are in tabular format, followed by the short description of the argument. If it
concerns afunction, and aresult element exists, the result description will be provided in a separate
section, before the actual description.

The declaration of an enumerated type will be laid out in a table, with the enumeration value at the
left, and the short description node of the value's element.

32

CHAPTER 5. GENERATED OUTPUT FILES.

5.2 Latex output

The latex output isin one big le with the name of the package as speci ed on the command line. in
this le, one chapter is made per unit.

Per unit the following sections are made:

1. A section with all constants.

2. A section with all types.

3. A section with all variables.

4. A section with all functions and procedures.

5. A section per declared class.

For the constants, types and variables, the declaration is given, followed by the descr node of the
element corresponding to the identi er. All other nodes are ignored.

For functions and procedures, a subsection is made per procedure or function. This subsection con-
sists of alist with the following entries:

Synopsis lled with the contents of the short tag.

Declaration Filled with the declaration of the function.

Arguments A tabular description of al arguments, if short tags are found for them.
Description Description of the function. Filled with the contents of the descr tag.
Errors Description of any error conditions. Filled with the contents of the errorstag.

See Also Cross-references to other functions. Filled with the contents of the seeal so tag.

For classes, a subsection is made with an overview of implemented methods. Then a subsection is
presented with available properties.

Then follows a subsection per method. These are formatted as a function, with an additional Visibil-
ity list element, giving the visibility of the function.

After the methods, alist of propertiesis given , formatted as a method, with an additional Access
list element, specifying whether the property is read/write or not.

33

	Introduction
	About this document
	About FPDoc
	Getting more information.

	Compiling and Installing FPDoc
	Compiling
	Installation

	FPDoc usage
	fpdoc
	FPDoc command-line options reference
	content
	descr
	format
	help
	hide-protected
	html-search
	import
	input
	lang
	latex-highlight
	output
	package
	show-private
	warn-no-node

	makeskel
	introduction

	Makeskel option reference
	descr
	suse:descr
	disable-arguments
	disable-errors
	disable-function-results
	disable-private
	disable-protected
	disable-seealso
	emitclassseparator
	help
	input
	lang
	output
	package
	update

	The description file
	Introduction
	Element names and cross-referencing
	Element name conventions
	Cross referencing: the link tag

	Tag reference
	Overview
	b : format bold
	caption : Specify table caption
	code : format as pascal code
	descr : Descriptions
	dd : definition data.
	dl : definition list.
	dt : definition term.
	element : Identifier documentation
	errors : Error section.
	fpdoc-description : Global tag
	i : Format italics
	li : list element
	link : Cross-reference
	module : Unit reference
	ol : Numbered list.
	p : Paragraph
	package : Package reference
	pre : Insert text as-is
	remark : format as remark
	seealso : Cross-reference section
	short : Short description
	table : Table start
	td : Table cell
	th : Table header
	tr : table row
	u : Format underlined
	ul : bulleted list
	var : variable

	Generated output files.
	HTML output
	Latex output

