Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 2.0.0
Document version 2.0
May 2005

Micha®l Van Canneyt

Contents

Pascal Tokens
1.1 Symbols e
12 CommentsS. o o e
1.3 Reservedwords
131 TurboPascalreservedwords
132 Dephireservedwords
133 FreePascal reservedwords o
134 Modiers
14 Identi €rs
15 Numbers.
16 Labels e
1.7 CharaCter Strings o o o

Constants

21 Ordinary constants o
22 TypedconstantsS
23 RESOUICESINNGS . © v v v v e e e e e e e e e e

Types
31 BasetypeS e e e
311 Ordinadtypes e e e

Subrangetypes e e

312 Realtypes. e

32 CharaCtertypes o e
321 Char.

322 SHINGS . . o e

323 Shortstringso

324 ANSISIINGS e

10
10
11
11
11
11
12
13
13

14
14
15
16

CONTENTS

325 WIdeStrings. e 24
326 Constantstrings. 24
3.27 PChar - Null terminated strings o 25
33 Structured TYPES . . . o o o 26
331 AIaYS. . . 26
Staticarrays. 27
DYynamiCarrayS v v v v e e e e e e e e e e e e e 28

332 ReECOrdtYPES . . . o o e e e 30
333 Settypes 33
334 Fletypes e 34
34 POINErS e 34
35 Forwardtypedeclarations. 36
36 Procedural types. 37
37 Varianttypes e 38
371 Denition e 38
3.7.2 Variantsinassignmentsand expressions 39
373 Vaiantsandinterfaces 40
Variables 41
41 Denition e 41
42 Declaration e e 41
43 SCOPE . o v e 43
44 Thread Variables 43
45 Properties 43
Objects 47
5.1 Declaration 47
52 Fields e 48
53 Constructorsand destructors 49
54 Mehods e 50
55 Methodinvocation 50
Staticmethods 51
Virtulmethods 51

Abstract methods 52

56 Vishility 53
Classes 54
6.1 Classdenitions 54
6.2 Classinstantiation. 56
6.3 Methods e 56
6.3 1 INVOCALION o e e e e 56

CONTENTS

6.32 Virtudmethods. 56
6.33 Classmethods 57

6.34 Messagemethods. 57

6.4 Properties 59
7 Interfaces 63
7.1 Denition 63
7.2 Interfaceidenti cation: AGUID 64
7.3 Interfacesand COM 65
74 CORBA andotheriInterfaces i 66
8 Expressions 67
8.1 EXPressionsyntaX v v i i i e e e e e e 68
8.2 Functioncalls 69
83 Setconstructors 70
8.4 Vauetypecasts 71
85 The@OPeErator i i e e e e 72
8.6 Operalors 72
8.6.1 Arithmeticoperators 72

8.6.2 Logica operators 73
8.6.3 Booleanoperators e e e 74

8.6.4 SHNQOPErators. e e e e e 74

865 Setoperalors 74

8.6.6 Relational operators 74

9 Statements 76
9.1 Simplestatements 76
911 ASSgNMENS e e e 76
9.1.2 Procedurestatements e e e 7

9.1.3 Gotostatements. 78

9.2 Structured statements e 78
921 Compoundstatements 79

922 TheCasestatement it 79

923 Thelf..then..elsesaement 80
924 TheFor..to/downto..dostatement 81
925 TheRepeat..until staement 82
926 TheWiile..dostatement 83
927 TheWthstaement, 83
928 ExceptionStatements. 85

9.3 Assemblerstatements 85

CONTENTS

10 Using functionsand procedures 87
10.1 Proceduredeclaration 87
10.2 Functiondeclaration 88
10.3 Parameter listS. o o e 88

10.3.1 Valueparameters e 89
10.3.2 Varigbleparameters. 89
10.3.3 Outparameters v v o o e e e e e e 90
10.34 Constantparameters 90
10.35 Openarray parameters o e 91
10.3.6 Arrayof const 91
104 Functionoverloading 93
105 Forwarddenedfunctions 94
10.6 External functions. 95
10.7 Assembler functions 96
10.8 MOdi €S . . . o o e 96
1081 aAliaS. . o v o e 97
1082 cdecl 97
1083 eXpOrt e 98
1084 inline e 98
10.85 interrupt e e 98
10.8.6 pascal e 98
10.8.7 popstack 98
10.8.8 public 99
10.8.9 register e e 99
10.8.10SaVEregisters e e e 99
10811safecall 99
10.8.12s0ft0at 99
10.8.43stdcall e 99
10.8.14varargs e e e 100
10.9 Unsupported TurboPascalmodiers 100

11 Operator overloading 101
111 Introduction 101
11.2 Operator declarations o v i e 101
11.3 ASSIgNMENt OPErators o o e e e e e e e e e e 102
11.4 Arithmeticoperators o o 104
115 CompariSion Operator o o e 105

12 Programs, units, blocks 107
12,1 ProgramsS . . . o o e e e e e e 107
122 UnitS. . . o o e 108

CONTENTS

123 BIOCKS . . . o 109
124 SCOPE . . o o e 110

1241 Block SCOpe. e e e 110

1242 RecOrdscope o vt i e e 111

1243 ClasSSCOPE .« v v v o v e e e e e e e 111

1244 UnNitSCOPE . . o o v o e e e e e 111
125 Libraries. o 112
Exceptions 113
13.1 Theraisestatement 113
13.2 Thetry..exceptstatement e 114
13.3 Thetry...nally statement 115
134 Exceptionhandlingnesting 116
135 EXceptionclasses o 116
Using assembler 117
14.1 Assembler statements 117
14.2 Assembler proceduresand functions 117

List of Tables

31 Predenedintegertypes 18
3.2 Predenedintegertypes 19
33 Booleantypes 19
34 Supported Real types 22
35 PChar pointerarithmetic. 26
3.6 SetManipulationoperators e 34
8.1 Precedenceof operators. 67
8.2 Binary arithmeticoperators 73
8.3 Unary arithmeticoperators 73
8.4 Logical Operators 73
85 B00lean operators 74
8.6 Setoperalors e e 75
8.7 Relational operators 75
9.1 AllowedCconstructsinFreePascal 77
10.1 Unsupportedmodi €S 100

LIST OF TABLES

About thisguide

This document serves as the reference for the Pascal langauge as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the pascal language. The aim isto list
which Pascal constructs are supported, and to show where the Free Pascal implementation differs
from the Turbo Pascal or Delphi implementations.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations

Throughout this document, we will refer to functions, types and variableswitht ypewri t er font.
Functions and procedures have their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.
The cross-references come in two avours:

o References to other functions in this manual. In the printed copy, a number will appear after
thisreference. It refers to the page where this function is explained. In the on-line help pages,
thisisahyperlink, which can be clicked to jump to the declaration.

o References to Unix manual pages. (For linux and unix related things only) they are printed in
typewriter font, and the number after it isthe Unix manual section.

Syntax diagrams

All elements of the pascal language are explained in syntax diagrams. Syntax diagrams are like ow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

»— syntactical elements are like this — <

Keywords which must be typed exactly asin the diagram:

»— keywords are like this — >

When something can be repeated, thereis an arrow around it:

»—f this can be repeated W ,

When there are different possibilities, they are listed in columns:

»—r First possibility — J «
Second possibility —

LIST OF TABLES

Note, that one of the possibilities can be empty:

% First possibility fﬂ
Second possibility
This means that both the rst or second possibility are optional. Of course, all these elements can be
combined and nested.

Chapter 1

Pascal Tokens

In this chapter we describe al the pascal reserved words, aswell asthe various waysto denote strings,
numbers, identi ers etc.

1.1 Symbols

Free Pascal alows all characters, digits and some special ASCII symbolsin aPascal source le.

[[
Recognised symbols

-»— letter A.Z
ez

w— digit— 0...9 —

»— hex digit —- 0...9 —
EA...Fﬂ
a..f—

The following characters have a special meaning:
+-rl=<>[].,():"@{}$#

and the following character pairs too:

<= >z 1= 4= -= *= [= (* *) (.) [/

When used in a range speci e, the character pair (. is equivaent to the left square bracket | .

Likewise, the character pair .) isequivalent to the right square bracket] . When used for comment

delimiters, the character pair (* isequivaent to the left brace { and the character pair *) isequiva
lent to theright brace } . These character pairs retain their normal meaning in string expressions.

1.2 Comments

Free Pascal supports the use of nested comments. The following constructs are valid comments:

CHAPTER 1. PASCAL TOKENS

(* This is an old style coment *)
{ This is a Turbo Pascal coment }
/1 This is a Delphi coment. Al is ignored till the end of the line.

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comrent 1 { comrent 2 } *)
{ comment 1 // Coment 2 }
(* comment 1 // Conment 2 *)
/1 conmment 1 (* conment 2 *)
/1l coment 1 { conment 2 }

The last two comments must be on one line. The following two will give errors:

/1 Valid comment { No |onger valid conment !!

}

and

/1 Valid comment (* No longer valid conmrent !!

*)

The compiler will react with a’invalid character’ error when it encounters such constructs, regardliess
of the - So switch.

1.3 Reserved words

Reserved words are part of the Pascal language, and cannot be rede ned. They will be denoted as
this throughout the syntax diagrams. Reserved words can be typed regardless of case, i.e. Pascal is
case insensitive. We make a distinction between Turbo Pascal and Delphi reserved words, since with
the - So switch, only the Turbo Pascal reserved words are recognised, and the Delphi ones can be
rede ned. By default, Free Pascal recognises the Delphi reserved words.

1.3.1 Turbo Pascal reserved words

The following keywords exist in Turbo Pascal mode

absol ute el se nil shl
and end not shr
array file obj ect string
asm f or of t hen
begi n function on to

br eak got o oper at or type
case if or uni t
const i mpl enent ati on packed unti
constructor in procedure uses
conti nue i nherited program var
destruct or inline record whil e
di v i nterface r epeat with
do | abel sel f xor
downt o nod set

10

Remark:

CHAPTER 1. PASCAL TOKENS

1.3.2 Delphireserved words

The Delphi (I1) reserved words are the same as the pascal ones, plus the following ones:

as finalization library t hr eadvar
cl ass finally on try
except initialization property

exports is rai se

1.3.3 Free Pascal reserved words

On top of the Turbo Pascal and Delphi reserved words, Free Pascal also considers the following as
reserved words:

di spose fal se true
exit new

1.3.4 Modi ers

Thefollowing isalist of all modi ers. They are not exactly reserved words in the sense that they can
be used as identi ers, but in speci ¢ places, they have a special meaning for the compiler.

absol ute far pascal saf ecal
abstract farl6 popst ack saveregisters
alias f orward private softf | oat
assenbl er fpccal | pr ot ect ed stdcal

cdecl i ndex public virtua

def aul t name publ i shed wite

export near read

ext ernal override register

Prede ned types such as Byt e, Bool ean and constants such as maxi nt are not reserved words.
They areidenti ers, declared in the system unit. This meansthat these types can be rede ned in other
units. The programmer is, however, not encouraged to do this, asit will cause alot of confusion.

1.4 Ildentiers

Identi ers denote constants, types, variables, procedures and functions, units, and programs. All
names of things that are de ned are identi ers. An identi er consists of 255 signi cant characters
(letters, digits and the underscore character), from which the rst must be an a phanumeric character,
or an underscore (_) The following diagram gives the basic syntax for identi ers.

[
Identi ers

»— identi er leetter;‘
- etter —
digit

11

CHAPTER 1. PASCAL TOKENS

1.5 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scienti ¢ notation (e.g. 0. 314E1).

For integer type constants, Free Pascal supports 4 formats:
1. Normal, decimal format (base 10). Thisis the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that caseisinsigni cant when using hexadecimal constants.

3. Asof version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with aampersand (&). For instance 15 is speci ed in octal notationas &17.

4. Binary notation (base 2). A binary number can be speci ed by preceding it with apercent sign
(%9. Thus, 255 can be speci ed in binary notationas %41111111.

The following diagrams show the syntax for numbers.

[
Numbers

»— hex digit sequence ff hex digit —
»— octal digit sequence ff octal digit —

»— bin digit sequence —— 1 -
[te]

»— digit sequence T digit -

»— unsigned integer digit sequence >
{ $ — hex digit sequence #
% — bin digit sequence —

~—sion

»— unsigned real — digit sequence — <
L . —digit sequence J L scale factor «l

»— scale factor fT E TL—j digit sequence —
e sign

»— unsigned number T unsigned real —
unsigned integerJ

»— signed number ﬁ unsigned number >
sign

Remark: Itisto note that al decimal constants which do no t within the -2147483648..2147483647 range,
are silently and automatically parsed as 64-bit integer constants as of version 1.9.0. Earliers versions
would convert it to areal-typed constant.

Remark: Notethat Octal and Binary notation are not supported in TP or Delphi compatibility mode.

12

CHAPTER 1. PASCAL TOKENS

1.6 Labds

Labels can be digit sequences or identi ers.

| |
L abel

»— label — digit sequence -)
L identi er

Remark: Notethat the- Sg switch must be speci ed beforelabels can be used. By default, Free Pascal doesn’t
support | abel and got o statements.

1.7 Character strings

A character string (or string for short) is a sequence of zero or more characters from the ASCII
character set, enclosed by single quotes, and on 1 line of the program source. A character set with
nothing between the quotes (' *) isan empty string.

[
Character strings

»— character string quoted string J -
[control string

»— quoted string -’ fT string character T T - >

»— string character T Any character except’ or CR l >

»— control string T # — unsigned integer l >

13

Chapter 2

Constants

Just asin Turbo Pascal, Free Pascal supports both normal and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are not different from the Turbo Pascal or Delphi implementation.

[|
Constant declar ation

»— constant declaration T identi er — = — expression —; — >

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operatorssuchas+, -, *, /, not, and, or, div, nod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 8, page 67. Only constants of the following types can be declared: Or di nal
types, Real types, Char,and Stri ng. Thefollowing areall valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c ='4; { Character type constant. }
s = 'This is a constant string ; {String type constant.}
s = chr(32)
I

s = SizeO (Longint);

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := 'sonme other string’;

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bits
constants can be speci ed.

14

CHAPTER 2. CONSTANTS

2.2 Typed constants

Typed constants serve to provide aprogram with initialised variables. Contrary to ordinary constants,
they may be assigned to at run-time. The difference with normal variables is that their value is
initialised when the program starts, whereas normal variables must be initialised explicitly.

[
Typed constant declaration

»— typed constant declaration ‘f identi er —: —type — = — typed constant — ; T—N

=— typed constant constant >
address constant —
array constant
record constant
procedural constant —

Given the declaration:

Const
S: String = 'This is a typed constant string’;

Thefollowing isavalid assignment:
S :="Result : ’+Func;

Where Func isafunction that returnsa St r i ng. Typed constants are often used to initialize arrays
and records. For arrays, the initial elements must be speci ed, surrounded by round brackets, and
separated by commas. The number of elements must be exactly the same as the number of elements
in the declaration of the type. Asan example:

Const
tt : array [1..3] of string[20] = ("ikke, "gij’, "hij’");
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of therecord should be speci ed, intheform Fi el d : Val ue,
separated by commas, and surrounded by round brackets. As an example:

Type
Point = record
X, Y . Rea
end;
Const

Oigin: Point = (X0.0; Y:0.0);

The order of the eldsin a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

Remark: It should be stressed that typed constants are initialized at program start. This is also true for
local typed constants. Local typed constants are also initialized at program start. If their value was
changed during previous invocations of the function, they will retain their changed value, i.e. they
are not initialized each time the function is invoked.

15

CHAPTER 2. CONSTANTS

2.3 Resourcestrings

A specia kind of constant declaration part isthe Resour est ri ng part. This part islike aConst
section, but it only allowsto declare constant of type string. Thispart isonly availableinthe Del phi
or obj f pc mode.

The following is an example of aresourcestring de nition:
Resourcestring

Fi |l eMenu
Edi t Menu

"&File...";
T&Edit. ..

All string constants de ned in the resourcestring section are stored in specia tables, alowing to
manipulate the values of the strings at runtime with some special mechanisms.

Semantically, the strings are like constants; Values can not be assigned to them, except through the
special mechanisms in the objpas unit. However, they can be used in assignments or expressions
as normal constants. The main use of the resourcestring section is to provide an easy means of
internationalization.

More on the subject of resourcestrings can be found in the Programmers guide, and in the chapter on
the objpas later in this manual.

16

file:../prog/prog.html

Chapter 3
Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which isin essence de ning an

identi er that can be used to denote this custom type when declaring variables further in the source

code.

[
Type declar ation

»— type declaration — identi er — =—-type —; — <

There are 7 major type classes :

[
Types

»— type — simple type - >
string type —
structured type
pointer type —

procedural type —
type identi er

The last class, type identi er, is just a means to give another name to atype. This presents a way
to make types platform independent, by only using these types, and then de ning these types for
each platform individually. The programmer that uses these units doesn’'t have to worry about type
size and so on. It aso allows to use shortcut names for fully quali ed type names. eg. dene
system | ongi nt asd ongi nt and thenredene | ongi nt .

3.1 Basetypes

The base or simple types of Free Pascal are the Delphi types. We will discuss each separate.

[
Simpletypes

17

CHAPTER 3. TYPES

=»— simple type —- ordinal type »—
1 real type J

»— real type - real type identi er — >

3.1.1 Ordinal types

With the exception of i nt 64, qwor d and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one bye one, in aspeci ed order. This property allows the operation of functionsas Inc (?7?),
Ord (??), Dec (??) on ordinal typesto be de ned.

2. Ordinal values have a smallest possible value. Trying to apply the Pred (??) function on the
smallest possible value will generate arange check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ (??) function on the
largest possible value will generate arange check error if range checking is enabled.

Integers

A list of pre-de ned integer typesis presented in table (3.1) The integer types, and their ranges and

Table 3.1: Prede ned integer types

Name
Integer
Shortint
Smallint
Longint
Longword
Int64
Byte
Word
Cardina
QWord
Boolean
ByteBool
LongBool
Char

sizes, that are prede ned in Free Pascal are listed in table (3.2). It is to note that the gwor d and
i nt 64 types are not true ordinals, so some pascal constructs will not work with these two integer
types.

Thei nt eger type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint or int64 in either Delphi or ObjFPC mode. The car di nal typeiscurrently always mapped
to the longword type. The de nition of the car di nal andi nt eger types may change from one
architecture to another and from one compiler mode to another. They usually have the same size as
the underlying target architecture.

18

Remark:

CHAPTER 3. TYPES

Type Range

Byte 0..255

Shortint -128 .. 127

Smallint -32768 .. 32767

Word 0.. 65535

Integer either smallint, longint or int64
Cardina either word, longword or qword
Longint -2147483648 .. 2147483647
Longword 0..4294967295

Int64 -9223372036854775808 .. 9223372036854775807
Qword 0 .. 18446744073709551615

Table 3.2: Prede ned integer types

Sizein bytes
1
1
2
2
size2,40r 8
size2,40r 8

(ool c N SN

Free Pascal does automatic type conversion in expressions where different kinds of integer types are

used.

Boolean types

Free Pascal supportsthe Bool ean type, with itstwo pre-de ned possible values Tr ue and Fal se.
It also supports the Byt eBool , Wbor dBool and LongBool types. These are the only two values
that can be assigned to a Bool ean type. Of course, any expression that resolves to a bool ean
value, can also be assigned to a boolean type. Assuming B to be of type Bool ean, the following

arevalid assignments:

B := True;
B : = Fal se;
B :=

Boolean expressions are also used in conditions.

1<>2; { Results in B :

Table 3.3; Boolean types

Name
Boolean 1
ByteBool 1
WordBool 2
LongBool 4

Size Ord(True)

1

Any nonzero value
Any nonzero value
Any nonzero value

= True }

In Free Pascal, bool ean expressions are always evaluated in such away that when the result is known,
the rest of the expression will no longer be evaluated (Called short-cut evaluation). In the following
example, the function Func will never be called, which may have strange side-effects.

B :
A

Fal se;
B and Func;

Here Func isafunction which returns a Bool ean type.

19

CHAPTER 3. TYPES

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal alows aso a C-style extension of the enumeration type, where avalueis assigned to a partic-
ular element of the enumeration list.

[
Enumerated types

»— enumerated type — (— identi er list) >
[assigned enum list J

»— identi er list ff identi er —

»— assigned enum list fT identi er —:= — expression — >

(see chapter 8, page 67 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

The C style enumeration type looks as follows:

Type
EnunType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number of f orty is 40, and not 3, as it would be when the ' : = 40’

wasn't present. The ordinal value of f ort yone isthen 41, and not 4, as it would be when the
assignment wasn't present. After an assignment in an enumerated de nition the compiler adds 1 to

the assigned value to assign to the next enumerated value. When specifying such an enumeration
type, it isimportant to keep in mind that the enumerated elements should be kept in ascending order.
The following will produce a compiler error:

Type
Enunifype = (one, two, three, forty := 40, thirty := 30);

Itisnecessary tokeepf orty andt hi rty inthecorrect order. When using enumeration typesitis
important to keep the following pointsin mind:

1. The Pr ed and Succ functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in acompiler error.

2. Enumeration types stored using adefault size. Thisbehaviour can be changed with the { SPACKENUM
n} compiler directive, which tells the compiler the minimal number of bytes to be used for
enumeration types. For instance

20

CHAPTER 3. TYPES

Type
{ $PACKENUM 4}
LargeEnum = (BigOne, BigTwo, BigThree);
{ $PACKENUM 1}
Smal | Enum = (one, two, three);
Var S : Smal | Enum
L : LargeEnum

begi n
WiteLn ("Small enum: ’,SizeO(S));
WiteLn (' Large enum: ', SizeO(L));
end.

will, when run, print the following:

Small enum: 1
Large enum: 4

More information can be found in the Programmers guide, in the compiler directives section.

Subrange types

A subrange type is arange of values from an ordinal type (the host type). To de ne a subrange type,
one must specify it’s limiting values: the highest and lowest value of the type.

[
Subrange types

»— subrange type — constant — .. — constant —

Some of the prede ned i nt eger typesare de ned as subrange types:

Type
Longi nt = $80000000. . $7fffffff;
Integer = -32768..32767,
shortint = -128..127;
byt e = 0..255;
Wor d = 0..65535;

Subrange types of enumeration types can also be de ned:

Type
Days = (nonday, t uesday, wednesday, t hur sday, fri day,
sat ur day, sunday) ;
Wor kDays = nonday .. friday;
WeekEnd = Saturday .. Sunday;

3.1.2 Real types

Free Pascal uses the math coprocessor (or emulation) for all its oating-point calculations. The Real

native type is processor dependant, but it is either Single or Double. Only the IEEE oating point

types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in table (3.4). The Conp typeis, in effect, a 64-hit integer and
is not available on al target platforms. To get more information on the supported types for each
platform, refer to the Programmers guide.

21

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 3. TYPES

Table 3.4: Supported Real types

Type Range Signi cant digits Size
Real platform dependant 7? 4or8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4951 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8

3.2 Character types

3.2.1 Char

Free Pascal supports the type Char . A Char isexactly 1 bytein size, and contains one character.
A character constant can be speci ed by enclosing the character in single quotes, asfollows: 'a or
'A’ are both character constants. A character can also be speci ed by its ASCII value, by preceding
the ASCII value with the number symbol (#). For example specifying #65 would be the same as
" A . Also, the caret character (*) can be used in combination with a letter to specify a character
with ASCII value less than 27. Thus*Gequals #7 (G is the seventh letter in the alphabet.) When
the single quote character must be represented, it should be typed two times successively, thus
represents the single quote character.

3.2.2 Strings

Free Pascal supportsthe St ri ng typeasitisde nedin Turbo Pascal (A sequence of characterswith
aspeci ed length) and it supports ansistrings as in Delphi. To declare a variable as a string, use the
following type speci cation:

[
ShortString

»— string type — string — <
L [— unsigned integer —] J

The meaning of a string declaration statement is interpreted differently depending on the { $H}
switch. The above declaration can declare an ansistrng or a short string.

Whatever the actua type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

3.2.3 Short strings

A string declaration declares a short string in the following cases:

1. If the switch isoff: { $H } , the string declaration will always be a short string declaration.

2. If the switch is on { $H+} , and there is a length speci er, the declaration is a short string
declaration.

The prede ned type Short St ri ng isdened asastring of length 255:

22

CHAPTER 3. TYPES

ShortString = String[255];

If the size of the string is not speci ed, 255 is taken as a default. The length of the string can be
obtained with the Length (??) standard runtime routine. For examplein

{$H}

Type
NanmeString = String[10];
StreetString = String;

NaneSt ri ng can contain a maximum of 10 characters. While St r eet St r i ng can contain up to
255 characters.

3.2.4 Ansistrings

Ansistrings are strings that have no length limit. They are reference counted and null terminated.
Internally, an ansistring is treated as a pointer. Thisis al handled transparantly, i.e. they can be
manipul ated as anormal short string. Ansistrings can be de ned using the predened Ansi Stri ng
type.

If the{ $H} switchison, then astring de nition using theregular St ri ng keyword and that doesn'’t
contain alength speci er, will be regarded as an ansistring as well. If alength speci er is present, a
short string will be used, regardless of the { $H} setting.

If the string is empty (), then the internal pointer representation of the string pointer isNi | . If the
string is not empty, then the pointer points to a structure in heap memory.

Theinternal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to apchar. If the string is empty (so the pointer is nil) then the compiler makes sure
that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actua string. A statement

S2: =81,
resultsin the reference count of S2 being decreased by one, The referece count of S1 isincreased by
one, and nally S1 (asapointer) iscopied to S2. Thisisasigni cant speed-up in the code.

If the reference count reaches zero, then the memory occupied by the string is deallocated automati-
cally, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initialy allocatesjust memory for a pointer,
not more. This pointer is guaranteed to be nil, meaning that the string isinitially empty. Thisistrue
for local and global ansistrings or anstrings that are part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[l..100000] of string;

Will copy 100,000 times ni | into A. When A goes out of scope, then the reference count of the
100,000 strings will be decreased by 1 for each of these strings. All this happens invisibly for the
programmer, but when considering performance issues, thisisimportant.

Memory will be allocated only when the string is assigned a value. If the string goes out of scope,
then its reference count is automatically decreased by 1. If the reference count reaches zero, the
memory reserved for the string is released.

If avalueisassigned to acharacter of astring that has a reference count greater than 1, such asin the
following statements:

23

CHAPTER 3. TYPES

S: =T, { reference count for Sand Tis now 2 }
S[1]:= @;

then a copy of the string is created before the assignment. Thisisknown as copy-on-write semantics.
The Length (?7?) function must be used to get the length of an ansistring.

To set the length of an ansistring, the SetLength (??) function must be used. Constant ansistrings
have areference count of -1 and are treated specially.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecasted to PChar or Poi nt er types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begi n
S :="This is an ansistring’;
PC. =Pchar (S) ;
P :=Pointer(S);

Thereis adifference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer wil be Ni | . If an empty ansistring is typecasted to a PChar , then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In generd, it is best to consider the result
of such atypecast as read-only, i.e. suitable for passing to a procedure that needs a constant pchar
argument.

It istherefore NOT advisable to typecast one of the following:

1. expressions.

2. strings that have reference count larger than 0. (call uniquestring to ensure a string has refer-
ence count 1)

3.2.5 WideStrings

Widestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
W deChar s instead of regular Chars. A W deChar is a two-byte character (an element of
a DBCS: Double Byte Character Set). Mostly the same rules apply for W deSt ri ngs as for
Ansi St ri ngs. The compiler transparantly converts WideStrings to Ansi Strings and vice versa.

Similarly to thetypecast of an AnsistringtoaPChar null-terminated array of characters, aWideString
can be converted to a PW deChar null-terminated array of characters. Note that the PW deChar
array isterminated by 2 null bytesinstead of 1, so atypecast to a pchar is not automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa;
2 procedural variables are present in the system unit which can be set to handle the conversion. For
more information, see the system units reference.

3.2.6 Constant strings

To specify aconstant string, it must be enclosed in single-quotes, just asaChar type, only now more
than one character is allowed. Given that Sisof type St ri ng, the following are valid assignments:

24

CHAPTER 3. TYPES

"This is a string.’;

"One’ +', Two'+', Three’;

"This isn" 't difficult !’;

"This is a weird character : '#145 |’;

nununnm

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be speci ed by their ASCII value. The example shows also that two

strings can be added. The resulting string is just the concatenation of the rst with the second string,

without spacesin between them. Strings can not be substracted, however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{ $H} switch.

3.2.7 PChar - Null terminated strings

Free Pascal supportsthe Delphi implementation of the PChar type. PChar isde ned asapointer to

aChar type, but allows additional operations. The PChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of type PChar is a pointer that points
to an array of type Char , which is ended by a null-character (#0). Free Pascal supportsinitializing
of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var p : PChar;

begi n
P:='This is a null-termnated string.’;
WiteLn (P);

end.

Resultsin the same as

pr ogr am t wo;

const P: PChar = 'This is a null-termnated string.’
begi n

WiteLn (P);
end.

These examples also show that it is possible to write the contents of the string to a le of type

Text . The strings unit contains procedures and functions that manipulate the PChar type asin the
standard C library. Sinceit is equivalent to a pointer to atype Char variable, it isaso possible to do
the following:

Program t hree;
Var S : String[30];

P : PChar;
begi n
S:='This is a null-term nated string.’ #0;
P:= @[1];
WiteLn (P);

end.
Thiswill have the same result asthe previous two examples. Null-terminated strings cannot be added

as normal Pascal strings. If two PChar strings mustt be concatenated; the functions from the unit
strings must be used.

25

file:../strings/strings.html
file:../strings/strings.html

CHAPTER 3. TYPES

However, it is possible to do some pointer arithmetic. The operators + and - can be used to do
operationson PChar pointers. Intable (3.5), P and Qare of type PChar , and | isof typeLongi nt .

Table 3.5: PChar pointer arithmetic

Operation Result
P+ 1 Adds| tothe address pointed to by P.
| + P Adds| tothe address pointed to by P.
P - Substracts| from the address pointed to by P.
P-Q Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

[
Structured Types
»— structured type — array type — —
—— record type
—— object type ——
class type —

I class reference type —
—— interface type ——
set type —
le type

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured types, as can be
seen in the syntax diagram. It will be mentioned when a type supports the packed keyword. In the
following, each of the possible structured typesis discussed.

3.3.1 Arrays

Free Pascal supports arrays as in Turbo Pascal, multi-dimensional arrays and packed arrays are also
supported, as well as the dynamic arrays of Delphi:

[
Array types

of —type ——«
]

»— array type ﬁ array — L
packed — [fT ordinal type fT]

26

CHAPTER 3. TYPES

Static arrays

When the range of the array is included in the array denition, it is called a static array. Trying to
access an element with an index that is outside the declared range will generate a run-time error (if
range checking ison). The following is an example of avalid array declaration:

Type
Real Array = Array [1..100] of Real;

Valid indexes for accessing an element of the array are between 1 and 100, where the borders 1 and
100 are included. Asin Turbo Pascal, if the array component typeisin itself an array, it is possible
to combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the following declaration:

Type
APoints = array[1..100,1..3] of Real;

The functions High (??) and Low (??) return the high and low bounds of the leftmost index type of
the array. In the above case, this would be 100 and 1.

When static array-type variables are assigned to each other, the contents of the whole array is copied.
Thisisalso true for multi-dimensional arrays:

programtestarrayil;

Type

TA = Array[0..9,0..9] of Integer;
var

A B : TA

I,J : Integer;
begi n

For 1:=0 to 9 do
For J:=0 to 9 do
All,J]:=l*J;
For 1:=0 to 9 do
begi n
For J:=0 to 9 do
Wite(AI,J]:2," ");
Witeln;
end;
B: =A;
Witeln;
For 1:=0 to 9 do
For J:=0 to 9 do
A[9-1,9-J]:=I*J;
For 1:=0 to 9 do
begi n
For J:=0 to 9 do
Wite(B[I,J]:2," ’);
Witeln;

27

CHAPTER 3. TYPES

end;
end.

The output will be 2 identical matrices.

Dynamic arrays

Asof version 1.1, Free Pascal also knows dynamic arrays: In that case, the array range is omitted, as
in the following example:

Type
TByteArray : Array of Byte;

When declaring a variable of a dynamic array type, the initial length of the array is zero. The actual
length of the array must be set with the standard Set Lengt h function, which will alocate the
memory to contain the array elements on the heap. The following example will set the length to
1000:

Var
A . TByteArray;

begi n
Set Lengt h(A, 1000) ;

After acal to Set Lengt h, valid array indexes are 0 to 999: the array index is always zero-based.

Note that the length of the array is set in elements, not in bytes of allocated memory (although these
may be the same). The amount of memory allocated is the size of the array multiplied by the size
of 1 element in the array. The memory will be disposed of at the exit of the current procedure or
function.

It is also possible to resize the array: in that case, as much of the elementsin the array aswill tin
the new size, will be kept. The array can be resized to zero, which effectively resets the variable.

At al times, trying to access an element of the array that is not in the current length of the array will
generate a run-time error.

Assignment of one dynamic array-type variable to another will let both variables point to the same
array. Contrary to ansistrings, an assignment to an element of one array will be re ected in the other:

Var
A, B : TByteArray;

begi n
Set Lengt h(A, 10) ;
Al 1]:=33;
B: =A;
Al 1]:=31;

After the second assignment, the rst element in B will also contain 31.
It can also be seen from the output of the following example:

programtestarrayi;

Type
TA = Array of array of Integer;

28

CHAPTER 3. TYPES

var
A B TA
I,J : Integer;
begi n

Set | engt h(A, 10, 10);
For 1:=0 to 9 do

For J:=0 to 9 do
All,Jd]:=l*d;

For 1:=0 to 9 do

begi n

For J:=0 to 9 do
Wite(All,J]:2,’

Witeln;

end;

B: =A;
Witel n;
For 1:=0 to 9 do

For J:=0 to 9 do
A[9-1,9-J]:=1*J;

For 1:=0 to 9 do

end.

The output will be amatrix of numbers, and then the same matrix, mirrorred.

begi n

For J:=0 to 9 do
Wite(B[I,J]:2,’

Witeln;

end;

Dynamic arrays are reference counted: if in one of the previous examples A goes out of scope and B
does not, then the array is not yet disposed of: the reference count of A (and B) is decreased with 1.

As soon as the reference count reaches zero, the memory is disposed of .

It is also possible to copy and/or resize the array with the standard Copy function, which acts asthe
copy function for strings:

programtestarray3;

Type

TA = array of I|nteger;
var

A B TA

| I nt eger;
begi n

Set | engt h(A, 10);
For 1:=0 to 9 do

All]:=l;

B: =Copy (A, 3,9);
For 1:=0 to 5 do

end.

Witeln(B[I]);

29

CHAPTER 3. TYPES

The Copy function will copy 9 elements of the array to anew array. Starting at the element at index

3 (i.e. the fourth element) of the array.

The Low function on a dynamic array will always return O, and the High function will return the
value Lengt h- 1, i.e, the value of the highest allowed array index. The Lengt h function will

return the number of elementsin the array.

3.3.2 Record types

Free Pascal supports xed records and records with variant parts. The syntax diagram for a record

typeis

[
Record types

»— record type ﬁ record — end -
packed — L eld list J

»— eld list xed elds
variant part J L;J

L xed elds —; J

»— xed elds fT identi er list f:ftypew

»— variant part — case — ordinal type identi er — of — variant —
[identierf:j LIN

»— variant — constant —, —: — (—) —
R | eld st -

So the following are valid record types declarations:

Type
Poi nt = Record
X, Y,Z : Real;
end;

RPoi nt = Record
Case Bool ean of
False : (X, Y,Z : Real);
True : (R theta, phi : Real);
end;

Better RPoint = Record
Case UsePol ar : Bool ean of
False : (X, Y,Z : Real);
True : (R theta,phi : Real);
end;

The variant part must be last in the record. The optional identi er in the case statement serves to
access thetag eld value, which otherwise would be invisible to the programmer. 1t can be used to
see which variant is active at acertain time. In effect, it introduces anew eld in the record.

Remark: Itispossibleto nest variant parts, asin:

30

CHAPTER 3. TYPES

Type
MyRec = Record
X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z: Longint);
)

end;

Thesize of arecord isthe sum of the sizes of its elds, each size of a eld isrounded up to apower of
two. If the record contains a variant part, the size of the variant part is the size of the biggest variant,
plus the size of the tag eld type if an identi er was declared for it. Here also, the size of each
part is rst rounded up to two. So in the above example, SizeOf (??) would return 24 for Poi nt ,
24 for RPoi nt and 26 for Bet t er RPoi nt. For MyRec, the value would be 12. If atyped le
with records, produced by a Turbo Pascal program, must be read, then chances are that attempting
to read that le correctly will fail. The reason for thisis that by default, elements of arecord are
aligned at 2-byte boundaries, for performance reasons. This default behaviour can be changed with
the { $PackRecor ds n} switch. Possible valuesfor n are 1, 2, 4, 16 or Def aul t . This switch
tellsthe compiler to align elements of arecord or object or classthat have sizelarger than n on n byte
boundaries. Elements that have size smaller or equal than n are aligned on natural boundaries, i.e.
to the rst power of two that is larger than or equal to the size of the record element. The keyword
Def aul t selectsthe default value for the platform that the code is compiled for (currently, thisis 2
on al platforms) Take alook at the following program:

Pr ogr am PackRecor dsDenv;
type
{$PackRecords 2}
Trecl = Record

A : byte;
B : Wrd;
end;

{$PackRecords 1}
Trec2 = Record

A . Byte;
B : Wrd;
end;

{$PackRecords 2}
Trec3 = Record
A B : byte;
end;

{$PackRecords 1}
Trec4 = Record
A B . Byte;

end;
{$PackRecords 4}
Trec5 = Record

A : Byte;
B: Array[1l..3] of byte;
C . byte;

end;

31

CHAPTER 3. TYPES

{$PackRecor ds 8}
Trec6 = Record

A . Byte;

B: Array[1..3] of byte;
C . byte;

end;

{$PackRecords 4}
Trec7 = Record

A . Byte;
B: Array[1l..7] of byte;
C . byte;

end;

{$PackRecor ds 8}
Trec8 = Record

A : Byte;

B: Array[1l..7] of byte;
C : byte;

end;

Var recl . Trecl;
rec2 . Trec2;
rec3 : TRec3;
rec4 : TRec4;
recb : Trech;
rec6é : TRec6;
rec7 . TRec7;
rec8 : TRecS8;

begi n

Wite ('Size Trecl : ', SizeO(Trecl));
Witeln (" Ofset B: ',Longint(@ecl.B)-Longint(@ecl));

Wite ('Size Trec2 : ', SizeO(Trec2));
Witeln (* Ofset B: ', Longint(@ec2.B)-Longint(@ec2));

Wite ('Size Trec3 : ', SizeOf (Trec3l));
Witeln (" Ofset B: ’,Longint(@ec3.B)-Longint(@ec3));

Wite ('Size Trecd : ',SizeOf(Trecd));
Witeln (* Ofset B: ', Longint(@ec4.B)-Longint(@ec4));

Wite ('Size Trec5 : ', SizeOf (Trech));
Witeln (" Ofset B : ', Longint(@ech.B)-Longint(@ech),
" Ofset C: ", Longint(@ech.C)-Longint(@ech));

Wite ('Size Trec6 : ', SizeOf(Trech));
Witeln (" Ofset B: ',Longint(@ec6.B)-Longint(@ec6),
" Ofset C: ',Longint(@ec6.C)-Longint(@ecb));

Wite ('Size Trec7 : ', SizeOf(Trec7));
Witeln (" Ofset B: ',Longint(@ec7.B)-Longint(@ec7),
" Ofset C: ",Longint(@ec7.C)-Longint(@ec7));

Wite ('Size Trec8 : ', SizeOf (Trec8));
Witeln (" Ofset B: ',Longint(@ec8.B)-Longint(@ec8),
Ofset C: ',Longint(@ec8.C)-Longint(@ec8));

end.

The output of this program will be :

Size Trecl : 4 Ofset B: 2

32

CHAPTER 3. TYPES

Si
Si
Si
Si
Si
Si
Si

ze
ze
ze
ze
ze
ze
ze

Trec2 :
Trec3 :
Trec4d :
Trec5 :
Trec6 :
Trec7 :
Trec8 :

3 Ofset B: 1
2 Ofset B: 1
2 Ofset B: 1
8 Ofset B: 4 Ofset C: 7
8 Ofset B: 4 Ofset C: 7

12 Ofset B: 4 Ofset C: 11
16 Ofset B: 8 Ofset C: 15

Andthisisasexpected. InTr ecl, since B hassize 2, it isaligned on a2 byte boundary, thus leaving
an empty byte between A and B, and making the total size 4. In Tr ec2, B is digned on a 1-byte
boundary, right after A, hence, the total size of the record is 3. For Tr ec3, the sizesof A, Bare 1,
and hence they are aligned on 1 byte boundaries. The sameistruefor Tr ec4. For Tr ec5, sincethe
sizeof B 3 issmallerthan4, Bwill be on a4-byte boundary, asthisisthe rst power of two that
islarger than it's size. The same holds for Tr ec6. For Tr ec7, B isaligned on a 4 byte boundary,
sinceit'ssize 7 islarger than 4. However,in Tr ec8, itisaligned on a 8-byte boundary, since 8
isthe rst power of two that is greater than 7, thus making the total size of the record 16. Free Pascal
supports also the ' packed record’, thisis arecord where all the elements are byte-aligned. Thus the
two following declarations are equivalent:

and

{$PackRecords 1}

Trec?2
A
B :

end;

Record

Byt e;
Wor d;

{$PackRecords 2}

Trec?2
A
B :

end;

Packed Record

Byt e;
Wor d;

Note the { $PackRecor ds 2} after the rst declaration !

3.3.3 Set types
Free Pascal supports the set types asin Turbo Pascal. The prototype of a set declaration is:

[
Set Types

»— set type — set — of — ordinal type -

Each of the elements of Set Type must be of type Tar get Type. Tar get Type can beany ordinal
type with arange between 0 and 255. A set can contain maximally 255 elements. The following
arevalid set declaration:

Type

Junk =

Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
Wor kDays :

Set of days;

33

CHAPTER 3. TYPES

Given this set declarations, the following assignment is legal :
WorkDays := [Mon, Tue, Wed, Thu, Fri];

The operators and functions for manipulations of sets are listed in table (3.6). Two sets can be

Table 3.6: Set Manipulation operators

Operation Operator
Union +
Difference

Intersection *
Add element i ncl ude

Deleteelement excl ude

compared with the <> and = operators, but not (yet) with the < and > operators. The compiler stores
small sets (less than 32 elements) in a Longint, if the type range allows it. This allows for faster
processing and decreases program size. Otherwise, sets are stored in 32 bytes.

3.3.4 Filetypes

File types aretypesthat store a sequence of some base type, which can be any type except another le
type. It can contain (in principl€e) an in nite number of elements. File types are used commonly to
store data on disk. Nothing prevents the programmer, however, from writing a le driver that stores
it's datain memory. Hereisthe type declaration for a le type:

[
Filetypes

>FletypeflefL »—
offtype~l

If notypeidenti er isgiven, then the leisan untyped le; it can be considered asequivalentto a le
of bytes. Untyped les require special commands to act on them (see Blockread (?7?), Blockwrite
(??)). Thefollowing declaration declares a le of records:

Type
Poi nt = Record
X Y,Z : real;
end;

PointFile = File of Point;

Internally, lesarerepresented by the Fi | eRec record, which is declared in the DOS unit.

A special letypeisthe Text letype, represented by the Text Rec record. A leof type Text
uses special input-output routines.

3.4 Pointers

Free Pascal supportsthe use of pointers. A variable of the pointer type containsan addressin memory,
where the data of another variable may be stored.

CHAPTER 3. TYPES

[
Pointer types

»— pointer type — - type identi er -

As can be seen from this diagram, pointers are typed, which means that they point to a particular kind
of data. The type of this data must be known at compile time. Dereferencing the pointer (denoted by
adding after the variable name) behaves then like a variable. This variable has the type declared
in the pointer declaration, and the variable is stored in the address that is pointed to by the pointer
variable. Consider the following example:

Program poi nters;
type
Buf f er String[255];
Buf Pt r ABuf fer;
Var B : Buffer;
BP : BufPtr;
PP : Pointer;
etc..

In this example, BP is a pointer to a Buf f er type; while B is avariable of type Buf f er . B takes
256 bytes memory, and BP only takes 4 bytes of memory (enough to keep an adressin memory).

Remark: Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type. The pointer then points to the zeroeth element of this
array. Thus the following pointer declaration

Var p : “Longint;
Can be considered equivalent to the following array declaration:
Var p : array[O..Infinity] of Longint;

Thedifferenceisthat the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using the Getmem (??) function. Thereference P isthen the same as
p[O] . Thefollowing program illustrates this maybe more clear:

program Poi nter Array;
var i : Longint;
p : ~Longint;
pp : array[0..100] of Longint;

begi n

for i :=0to 100 do pp[i] :=1i; { Fill array }

p 1= @p[0]; { Let p point to pp }
for i :=0 to 100 do

if p[i]<>pp[i] then
WiteLn (' Choh, problem!’)
end.

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed pointer, the
instructions

35

CHAPTER 3. TYPES

Inc(P);
Dec(P);

Will increase, respectively decrease the address the pointer points to with the size of thetype P isa
pointer to. For example

Var P : ~Longint;
Inc (p);

will increase P with 4. Normal arithmetic operators on pointers can also be used, that is, thefollowing
arevalid pointer arithmetic operations:

var pl,p2 : ~Longint;

L : Longint;

begi n

P1L := @2;

P2 1= @;

L := P1-PZ2;

P1 := P1-4;

P2 = P2+4;
end.

Here, the value that is added or substracted is multiplied by the size of the type the pointer points to.
In the previous example P1 will be decremented by 16 bytes, and P2 will be incremented by 16.

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to de ne this
pointer as a typed pointer, so the next record can be allocated on the heap using the New call. In
order to do so, the record should be de ned something like this:

Type
TListltem = Record
Data : Integer;
Next : ~TListltem
end;

When trying to compile this, the compiler will complain that the TLi st | t emtypeisnot yet de ned
when it encounters the Next declaration: Thisis correct, as the de nition is still being parsed.

To be able to have the Next element as atyped pointer, a’ Forward type declaration’ must be intro-
duced:

Type
PListltem = ~TListltem
TListltem = Record
Data : |nteger;
Next : PTListltem
end;

When the compiler encounters atyped pointer declaration where the referenced typeisnot yet known,
it postpones resolving the reference later on: The pointer de nition is a’ Forward type declaration’.

36

CHAPTER 3. TYPES

The referenced type should be introduced later in the same Ty pe block. No other block may come
between the de nition of the pointer type and the referenced type. Indeed, even the word Type
itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve
all pending declarationsin the current block. In most cases, the de nition of the referenced type will
follow immediatly after the de nition of the pointer type, as shown in the above listing. The forward
de ned type can be used in any type de nition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

3.6 Procedural types

Free Pascal has support for procedural types, although it differsalittle from the Turbo Pascal imple-
mentation of them. The type declaration remains the same, as can be seen in the following syntax
diagram:

[
Procedural types

»— procedural type —— function header — <
Tprocedure header J Lof —object J L ; —call modi ers J

»— function header — function - formal parameter list — : — result type

»— procedure header — procedure - formal parameter list >

»— call modi ers —— register -
—— cdecl ——
—— pascal —
—— stdcall
— safecall —
I saveregisters —
L— popstack —

For adescription of formal parameter lists, see chapter 10, page 87. The two following examples are
valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Ni I, for both normal procedure pointers and method pointers.
2. A variable reference of aprocedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

37

CHAPTER 3. TYPES

Procedure printit (Var X : Integer);

begi n

WitelLn (x);
end;
Proc := @rintit;
Func := @i ;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn't necessary to
use the address operator (@ when assigning a procedura type variable, whereas in Free Pascal it is
required (unlessthe - So switch isused, in which case the address operator can be dropped.)

Remark: The modi ers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begi n
WitelLn (x);
end;
begi n
Proc := @rintit;
end.

Because the TOneAr gCcal | typeisaprocedure that uses the cdecl calling convention.

3.7 Variant types

3.7.1 Denition

Asof version 1.1, FPC has support for variants. For variant support to be enabled, the variants unit
must be included in every unit that uses variants in some way. Furthermore, the compiler must bein
Del phi or Obj FPC mode.

The type of a value stored in a variant is only determined at runtime: it depends what has been
assigned to the to the variant. Almost any type can be assigned to variants: ordinal types, string
types, int64 types. Structured types such as sets, records, arrays, les, objects and classes are not
assign-compatible with avariant, aswell as pointers. Interfaces and COM or CORBA objects can be
assigned to a variant.

This means that the following assignments are valid:

Type

TMyEnum = (One, Two, Thr ee);
Var

V . Variant;

I : Integer;

B : Byte,

W: Wrd;

Q : Int64;

E : Extended;

D : Doubl e;

En : TMyEnum

38

CHAPTER 3. TYPES

AS : Ansi String;
W5 : WdeString;

begi n
V=1 ;

2<<<SS<<<S
I
m
=

)
>S5

And of course vice-versa as well.

Remark: The enumerated type assignment is broken in the early 1.1 development series of the compiler. Itis
expected that thisis xed soon.

A variant can hold an an array of values: All elementsin the array have the same type (but can be of
type'variant’). For avariant that contains an array, the variant can be indexed:

Program testv;

uses vari ants;

Var
A : Variant;
| : integer;
begi n

A: =Var ArrayCreate([1, 10], varl nt eger);
For 1:=1 to 10 do

AllT: =l
end.
(for the explanation of Var Ar r ayCr eat e, see Unit reference.)

Note that when the array contains a string, thisis not considered an ’array of characters', and so the
variant cannot be indexed to retrieve a character at a certain position in the string.

Remark: The array functionality is broken in the early 1.1 development series of the compiler. It is expected
that thisis xed soon.

3.7.2 Variants in assignments and expressions

As can be seen from the de nition above, most simple types can be assigned to a variant. Likewise,
avariant can be assigned to asimple type: If possible, the value of the variant will be converted to
the typethat is being assigned to. This may fail: Assigning avariant containing a string to an integer
will fail unless the string represents a valid integer. In the following example, the rst assignment
will work, the second will fail:

programtestv3,;

uses Variants;

39

file:../units/units.html

Remark:

CHAPTER 3. TYPES

Var
V : Variant;
I : Integer;

begi n
V: =100 ;
.=V,
Witeln(’l : ",1);
V. =" Sonet hi ng el se’;
| .=V,
Witeln(’l @ " ,1);
end.

The rst assignment will work, but the second will not, as Sonet hi ng el se cannot be converted
to avalid integer value. An EConvert Er r or exception will be the result.

The result of an expression involving avariant will be of type variant again, but this can be assigned
to avariable of adifferent type - if the result can be converted to avariable of this type.

Note that expressionsinvolving variants take more time to be evaluated, and should therefore be used
with caution. If alot of calculations need to be made, it is best to avoid the use of variants.

When considering implicit type conversions (e.g. byte to integer, integer to double, char to string)
the compiler will ignore variants unless a variant appears explicitly in the expression.

3.7.3 Variants and interfaces
Dispatch interface support for variantsis currently broken in the compiler.

Variants can contain areferenceto an interface - anormal interface (descending from | | nt er f ace)
or adispatchinterface (descending from | Di spat ch). Variants containing a reference to a dispatch
interface can be used to control the object behind it: the compiler will use late binding to perform
the call to the dispatch interface: there will be no run-time checking of the function names and
parameters or arguments given to the functions. The result type is aso not checked. The compiler
will simply insert code to make the dispatch call and retrieve the result.

This means basically, that you can do the following on Windows:

Var
W: Variant;
V : String;
begi n

W =Cr eat ed eChj ect (' Wrd. Application’);
V: =W Appl i cati on. Ver si on;

Witeln('Installed version of M5 Wrd is : ',V);
end;
Theline

V: =W Appl i cati on. Ver si on;

is executed by inserting the necessary code to query the dispatch interface stored in the variant W and
execute the call if the needed dispatch information is found.

40

Chapter 4

Variables

4.1 Denition

Variables are explicitly named memory locations with a certain type. When assigning values to
variables, the Free Pascal compiler generates machine code to move the val ue to the memory location
reserved for this variable. Where this variable is stored depends on where it is declared:

e Global variables are variables declared in aunit or program, but not inside a procedure or func-
tion. They are stored in xed memory locations, and are available during the whole execution
time of the program.

e Local variables are declared inside a procedure or function. Their value is stored on the pro-
gram stack, i.e. not at xed locations.

The Free Pascal compiler handles the allocation of these memory locations transparantly, although
this location can be in uenced in the declaration.

The Free Pascal compiler also handlesreading valuesfrom or writing valuesto the variables transparantly.
But even this can be explicitly handled by the programmer when using properties.

Variables must be explicitly declared when they are needed. No memory isallocated unlessavariable
is declared. Using an variable identi er (for instance, aloop variable) which is not declared r<t, is
an error which will be reported by the compiler.

4.2 Declaration

The variables must be declared in a variable declaration section of a unit or a procedure or function.
It looks as follows:

[
Variable declaration

»— variable declaration —identi er —: —type

L = — expression J

Lvariable modi ers J ’

41

CHAPTER 4. VARIABLES

=-variable modi ers absolute integer expression -
L identi er #

; export —
;cvar

L external — L J L J
string constant — name — string constant —

This means that the following are valid variable declarations:

Var
curterml : integer
curtern?2 : integer; cvar
curternB8 : integer; cvar; external
curtermd : integer; external nanme 'curternB’;
curternb : integer; external 'libc’ nane 'curtern®’;
curtermé : integer absolute curternmt;
curternv : integer; cvar; export;
curternB : integer; cvar; public;
curternm® : integer; export nanme 'ne’;
curtermlO : integer; public nane 'nw’

curtermll : integer =1 ;
The difference between these declarations is as follows:

1. The rst form (curt er ml) de nes aregular variable. The compiler manages everything by
itself.

2. Thesecond form (cur t er nR) declaresalso aregular variable, but speci esthat the assembler
name for this variable equals the name of the variable as written in the source.

3. Thethird form (cur t er nB) declares avariable which islocated externally: the compiler will
assume memory is located el sewhere, and that the assembler name of thislocation is speci ed
by the name of the variable, as written in the source. The name may not be speci ed.

4. The fourth form is completely equivalent to the third, it declares a variable which is stored
externally, and explicitly gives the assembler name of the location. If cvar is not used, the
name must be speci ed.

5. The fthformisavariant of the fourth form, only the name of the library in which the memory
isreserved is speci ed aswell.

6. The sixth form declares avariable (cur t er n6), and tells the compiler that it is stored in the
same location as another variable (cur t er nil)

7. The seventh form declares avariable (cur t er n7), and tells the compiler that the assembler
label of this variable should be the name of the variable (case sensitive) and must be made
public. (i.e. it can be referenced from other object les)

8. Theeight form (cur t er n8B) is equivalent to the seventh: 'public’ isan aliasfor 'export’.

42

CHAPTER 4. VARIABLES

9. The ninth and tenth form are equivalent: they specify the assembler name of the variable.

10. the elevents form declares a variable (cur t er mL1) and initializes it with a value (1 in the
above case).

Note that assembler names must be unique. It's not possible to declare or export 2 variables with the
same assembler name.

4.3 Scope

Variables, just as any identi er, obey the general rules of scope. In addition, initialized variables are
initialized when they enter scope:

e Globa initialized variables are initialized once, when the program starts.

e Local initialized variables areinitialized each time the procedure is entered.

Note that the behaviour for local initialized variables is different from the one of alocal typed con-
stant. A local typed constant behaves like a global initialized variable.

44 Thread Variables

For a program which uses threads, the variables can be redlly global, i.e. the same for all threads, or
thread-local: this means that each thread gets a copy of the variable. Local variables (de ned inside

a procedure) are always thread-local. Global variables are normally the same for al threads. A
global variable can be declared thread-local by replacing thevar keyword at the start of the variable
declaration block with Thr eadvar :

Thr eadvar
| OResult : Integer;

If no threads are used, the variable behaves as an ordinary variable. If threads are used then acopy is
made for each thread (including the main thread). Note that the copy is made with the original value
of the variable, not with the value of the variable at the time the thread is started.

Threadvars should be used sparingly: There is an overhead for retrieving or setting the variable’'s
value. If possible at al, consider using local variables; they are always faster than thread variables.

Threads are not enabled by default. For moreinformation about programming threads, see the chapter
on threads in the Programmers guide.

45 Properties

A global block can declare properties, just as they could be de ned in aclass. The differenceis that

the global property does not need a class instance: thereis only 1 instance of this property. Other
than that, a global property behaves like a class property. The read/write speci ers for the global

property must also be regular procedures, not methods. The concept of a global property is speci ¢
to Free Pascal, and does not exist in Delphi.

The concept of a global property can be used to "hide' the location of the value, or to calculate the
value on the 'y, or to check the values which are written to the property.

The declaration is as follows:

file:../prog/prog.html

CHAPTER 4. VARIABLES

[
Properties

»— property de nition —identi er J property speci ers ——»«

L property interface

. —type identier —

»— property interface — L J X
property parameter list —

L index — integerconstant J

»— property parameter list — [‘f parameter declaration T] >

»— property speci ers — —
Lread speci er J LWrite speci er J Ldefault speci er J

=»— read speci er —read — eld or function >

»— Write speci er —write — eld or procedure >

»— default speci er default L J >
constant —
nodefault

»— eld or procedure — eld identier — »—
[procedure identi er «l

»— eld or function eld identi er »—
[function identi er J

The following is an example:

{$node obj f pc}
unit testprop;

I nterface

Function Get MyInt : Integer;
Procedure Set Myl nt(Value : Integer);

Property
M/Prop : Integer Read GetWInt Wite Set Myl nt;

| npl enent ati on

Uses sysutils;

Var

FMyInt : [Integer;
Function Get MyInt : Integer;
begi n

Resul t: =FMyI nt ;

CHAPTER 4. VARIABLES

end;
Procedure Set Myl nt(Value : Integer);
begi n

If ((Value nmod 2)=1) then

Rai se Exception. Create(’ MyProp can only contain even val ue’);

FMyI nt : =Val ue;
end;
end.
The read/write speci ers can be hidden by declaring them in another unit which must beinthe uses
clause of the unit. This can be used to hide the read/write access speci ers for programmers, just as
if they wereinapr i vat e section of aclass (discussed below). For the previous example, thiscould
look as follows:

{$node obj f pc}
unit testrw

I nterface

Function GetMyInt : Integer;
Procedure Set Myl nt(Value : Integer);

| npl enent ati on
Uses sysutils;

Var
FMyI nt : I nteger,;

Function GetMlInt : Integer;
begi n

Resul t: =FMyI nt ;
end;

Procedure Set Myl nt(Value : Integer);
begi n
If ((Value nod 2)=1) then
Rai se Exception.Create(’' Only even values are allowed’);
FM/I nt : =Val ue;
end;
end.
The unit testprop would then look like:

{$node obj f pc}
unit testprop;

I nterface

45

CHAPTER 4. VARIABLES

uses testrw

Property
MyProp : Integer Read GetMyInt Wite Set Wlnt;

| mpl ement ati on

end.

46

Chapter 5

Objects

5.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal. Objects should be treated as a special kind of record. The record contains al the elds that
are declared in the objects de nition, and pointers to the methods that are associated to the objects
type.

An object is declared just as a record would be declared; except that now,procedures and functions
can be declared as if they were part of the record. Objects can inherit elds and methods from
parent objects. This means that these elds and methods can be used as if they were included in
the objects declared asa child object.

Furthermore, a concept of visibility isintroduced: elds, procedures and functions can be delcared

aspubl i c orpri vat e. By default, eldsand methodsare publ i ¢, and are exported outside the
current unit. Fields or methods that are declared pri vat e are only accessible in the current unit.
The prototype declaration of an object is as follows:

[
object types

»—ﬁobjectf end ————»<
packed — LheritageJ component list fjJ

object visibility speci er

»— heritage — (— object type identi er —) -

»— component list -
Lf eld de nition TJ Lfmethod de nition TJ

»— eld de nition —identierlist —: —type —; — »—

»— method de nition —— function header — ; —method directives —————————»<
procedure header
constructor header
desctuctor header —

»— method directives

Lvirtual - J Labstract - J LcaII modi ers —; J

47

CHAPTER 5. OBJECTS

»— object visibility speci er private —
{ protectedj
public —

As can be seen, as many pri vat e and publ i ¢ blocks as needed can be declared. Met hod
defi ni ti ons arenormal function or procedure declarations. Fields cannot be declared after meth-
ods in the same block, i.e. the following will generate an error when compiling:

Type MyQbj = hj ect
Procedure Doit;
Field : Longint;
end;
But the following will be accepted:

Type MyObj = nj ect

Public
Procedure Doit;
Private
Field : Longint;
end;

because the eld isin adifferent section.

Remark: Free Pascal also supports the packed object. Thisisthe same as an object, only the elements (elds)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TObj = packed object;
Constructor init;
end;
Pobj = "Toj ;

Var PP : Pobj;

Similarly, the{ $PackRecor ds } directive acts on objects aswell.

5.2 Fields

Object Fields are like record elds. They are accessed in the same way as a record eld would be
accessed : by using aquali ed identi er. Given the following declaration:

Type TAnCbj ect = bj ect
AField : Longint;
Procedure AMet hod;
end;

Var AnCbj ect : TAnObj ect;

then the following would be a valid assignment:

AnObj ect. AField : = 0;

48

CHAPTER 5. OBJECTS

Inside methods, elds can be accessed using the short identi er:

Procedure TAnObj ect. AMet hod;
begi n

AField := 0;
end;
Or, onecan usethesel f identi er. The sel f identi er refersto the current instance of the object:

Procedure TAnObj ect. AMet hod;
begi n

Self.AField := 0;
end;

One cannot access eldsthat arein aprivate section of an object from outside the objects’ methods. If
thisis attempted anyway, the compiler will complain about an unknown identi er. It is also possible
to usethewi t h statement with an object instance:

Wth AnChject do
begin
Afield := 12;
AMet hod;
end;

In this example, between the begi n and end, itisasif AnCbj ect was prepended to the Af i el d
and Anret hod identi ers. More about thisin section 9.2.7, page 83

5.3 Constructorsand destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects. The declaration of a constructor or destructor is as follows:

[
Constructors and destructors

»— constructor declaration — constructor header — ; — subroutine block ————»«
»— destructor declaration — destructor header — ; — subroutine block —M—»«

»— constructor header — constructor — identi er fﬁ
[quali ed method identi er

»— formal parameter list — -

»— destructor header — destructor — identi er f—J>
[quali ed method identi er
~— formal parameter list — -

49

CHAPTER 5. OBJECTS

A constructor/destructor pair is required if the object uses virtual methods. In the declaration of the
object type, a smple identi er should be used for the name of the constuctor or destructor. When
the constructor or destructor is implemented, A quali ed method identi er should be used, i.e. an
identi er of theform obj ecti dentifier. net hodi denti fi er. FreePasca supportsalsothe
extended syntax of the Newand Di spose procedures. In case a dynamic variable of an object type
must be all ocated the constructor’s name can be speci ed inthecall to New. The Newisimplemented
as afunction which returns a pointer to the instantiated object. Consider the following declarations:

Type
TObj = object;
Constructor init;
end;
Pobj = ~TObj;

Var PP : Pobj;

Then the following 3 calls are equivalent:
pp := new (Pobj,Init);
and

new(pp,init);

and also

new (pp);
ppM.init;

In the last case, the compiler will issue a warning that the extended syntax of new and di spose
must be used to generate instances of an object. It is possible to ignore this warning, but it's better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Di spose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

54 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter : sel f . Self points to the object with which the method was invoked. When implementing
methods, the fully quali ed identi er must be given in the function header. When declaring methods,
anormal identi er must be given.

55 Method invocation

Methods are called just as normal procedures are called, only they have an object instance identi er
prepended to them (see a so chapter 9, page 76). To determine which method iscalled, it is necessary
to know the type of the method. We treat the different typesin what follows.

50

CHAPTER 5. OBJECTS

Static methods

Static methods are methods that have been declared without a abst ract or vi rt ual keyword.
When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Obj ect

procedure Doit;

end;
PParent = ~TParent;
TChild = Object(TParent)

procedure Doit;
end;
PChild = ATChi | d;

As it is visible, both the parent and child objects have a method called Doi t . Consider now the
following declarations and cals:

Var Parent A, ParentB : PParent;
Child . PChil d;
Parent A : = New(PParent, |l nit);
ParentB : = New(PChild,Init);
Child := Newm(PChild, Init);
Par ent A*. Doi t;

Par ent B*. Doi t;
Chi | d*. Doi t;

Of the three invocations of Doi t , only the last onewill call TChi | d. Doi t , the other two calls will
call TPar ent . Doi t. Thisis because for static methods, the compiler determines at compile time
which method should be called. Since Par ent B is of type TPar ent , the compiler decides that
it must be called with TPar ent . Doi t , even though it will be created as a TChi | d. There may
be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods
To remedy the situation in the previous section, vi r t ual methods are created. This is simply

done by appending the method declaration with thevi r t ual modi er. Going back to the previous
example, consider the following alternative declaration:

Type
TParent = Ohj ect

procedure Doit;virtual;
end;
PParent = ~TParent;
TChild = Object(TParent)

51

CHAPTER 5. OBJECTS

procedure Doit;virtual;
end;
PChild = ATChil d;

As it is visible, both the parent and child objects have a method called Doi t . Consider now the
following declarations and calls :

Var Parent A, ParentB : PParent;
Child : PChil d;
Parent A : = New(PParent, |l nit);
ParentB : = New(PChild,Init);
Child := New(PChild, Init);
Par ent A*. Doi t;

Par ent B*. Doi t;
Chi |l d™. Doi t;

Now, different methods will be called, depending on the actual run-time type of the object. For
Par ent A, nothing changes, since it is created as a TPar ent instance. For Chi | d, the situation
also doesn’t change: it is again created as an instance of TChi | d. For Par ent B however, the
situation does change: Even though it was declared as a TPar ent , it is created as an instance of
TChi | d. Now, when the program runs, before calling Doi t , the program checks what the actual
type of Par ent Bis, and only then decides which method must be called. Seeing that Par ent B is
of type TChi | d, TChi | d. Doi t will be called. The code for this run-time checking of the actua
type of an object isinserted by the compiler at compiletime. The TChi | d. Doi t issaid to override
the TPar ent . Doi t . It ispossible to accesthe TPar ent . Doi t from within the varTChild.Doit,
withthei nheri t ed keyword:

Procedure TChild. Doit;
begi n
i nherited Doit;

end;

In the above example, when TChi | d. Doi t iscalled, the rstthingit doesiscall TPar ent . Doi t .
The inherited keyword cannot be used in static methods, only on virtual methods.

Abstract methods

An abstract method isaspecia kind of virtual method. A method can not be abstract if it isnot virtual
(thisis not obvious from the syntax diagram). An instance of an object that has an abstract method
cannot be created directly. The reason isobvious: there is no method where the compiler could jump
to! A method that isdeclared abst r act does not have an implementation for this method. It isup
to inherited objects to override and implement this method. Continuing our example, take alook at
this:

Type
TParent = Obj ect

procedure Doit;virtual;abstract;
end;

PPar ent =*TPar ent ;

TChild = Object(TParent)

52

CHAPTER 5. OBJECTS

procedure Doit;virtual;
end;
PChild = ~TChil d;

As it is visible, both the parent and child objects have a method called Doi t . Consider now the
following declarations and calls :

Var Parent A, ParentB : PParent;
Child : PChil d;
Parent A : = New(PParent,Init);
ParentB : = New(PChild,Init);
Child := Newm(PChild, Init);
Par ent A*. Doi t;

Par ent B*. Doi t;
Chi | d™. Doi t;

First of al, Line 3 will generate acompiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detected that PPar ent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark: If an abstract method is overridden, The parent method cannot be called with i nher i t ed, since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract nethods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

5.6 Vighility

For objects, 3 visibility speci ersexist: pri vat e, prot ect ed andpubl i c. If avisibility speci-
erisnot speci ed, publ i ¢ isassumed. Both methodsand elds can be hidden from a programmer
by putting theminapri vat e section. The exact visibility ruleis asfollows:

Private All eldsand methodsthat areina pri vat e block, can only be accessed in the module
(i.e. unit or program) that contains the object de nition. They can be accessed from inside the
object’s methods or from outside them e.g. from other objects’ methods, or global functions.

Protected Isthe same as Pri vat e, except that the members of a Pr ot ect ed section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible, from everywhere. Fields and metodsin apubl i ¢ section
behave as though they were part of an ordinary r ecor d type.

53

Chapter 6

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept of
"Classes . A class can be seen as a pointer to an object, or a pointer to arecord.

Remark: In earlier versions of Free Pascal it was necessary, in order to use classes, to put the objpas unit in
the uses clause of a unit or program. Thisis no longer needed as of version 0.99.12. As of version
0.99.12 the system unit contains the basic de nitions of TChj ect and TCl ass, as well as some
auxiliary methods for using classes. The objpas unit still exists, and contains some rede nitions of
basic types, so they coincide with Delphi types. The unit will be loaded automatically when the - S2
or - Sd options are speci ed.

6.1 Classdenitions

The prototype declaration of aclassisasfollows:

[
Classtypes

»—ﬁ class end >
packed — LheritageJ component list ﬂJ
ier —

class visibility spec

=— heritage — (— class type identier —) — »—

»— component list —
L{ eld de nition]J method de nition
property de nition

»— eld de nition —identier list —: —type —; -

»— method de nition — function header ——— ; —

[class j [procedure header j
constructor header —
desctuctor header —

L— virtual — ; J Lcall modi ers —; J
L ; —abstract J
override
L message fIinteger constant —
string constant —

CHAPTER 6. CLASSES

»— class visibility speci er private —
protected —
public —
published

Asmany privat e, prot ect ed, publ i shed and publ i ¢ blocks as needed can be repeated.
Methods are normal function or procedure declarations. As can be seen, the declaration of aclassis
almost identical to the declaration of an object. The real difference between objects and classes is
in the way they are created (see further in this chapter). The visibility of the different sectionsis as
follows:

Private All eldsand methodsthat areina pri vat e block, can only be accessed in the module
(i.e. unit) that contains the class de nition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

Protected Isthe same as Pri vat e, except that the members of a Pr ot ect ed section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Isthe sameasaPubl i ¢ section, but the compiler generates also type information that
is needed for automatic streaming of these classes. Fieldsdened ina publ i shed section
must be of classtype. Array peroperties cannot bein apubl i shed section.

It is also possible to de ne class reference types:

[
Classreferencetype

»— class of - classtype -

Classreference types are used to create instances of acertain class, whichisnot yet known at compile
time, but which is speci ed at run time. Essentially, a variable of a class reference type contains a

pointer to the VMT of the spe cied class. This can be used to construct an instance of the class

corresponding to the VMT. The following example shows how it works:

Type
TConmponent Cl ass = Cl ass of TComponent;

Function CreateConponent (AC ass : TConponent C ass; AOamer : TConponent)
begi n

...

Resul t : =ACl ass. Cr eat e(AOwner) ;

/1
end;

More about instantiating a class can be found in the next section.

55

TConponent |

CHAPTER 6. CLASSES

6.2 Classinstantiation

Classes must be created using their constructor. Remember that a class is a pointer to an object, so
when a variable of some class is declared, the compiler just allocates a pointer, not the entire object.
The constructor of a class returns a pointer to an initialized instance of the object. So, to initialize an
instance of some class, one would do the following :

C assVar : = O assType. Construct or Nane;

The extended syntax of new and di spose can be used to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
get mem to alocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to it'sdata, insel f .

Remark:

e The{$PackRecords } directive aso affects classes. i.e. the alignment in memory of the
different elds depends on the value of the { $PackRecords } directive.

e Just asfor objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries. i.e. as close
aspossible.

e Si zeOf (cl ass) will return 4, since aclassis but a pointer to an object. To get the size of
the classinstance data, use the TObj ect . | nst anceSi ze method.

6.3 Methods

6.3.1 invocation

Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnQbject : TAnObj ect;

begi n
AnCbj ect := TAnObj ect. Create;
ANobj ect . AMet hod;

6.3.2 Virtual methods

Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is suf cient to redeclare the same method in a descendent object with the keyword
vi rtual tooverrideit. For classes, the situation is different: virtual methods must be overridden
with theoverri de keyword. Failing to do so, will start a new batch of virtual methods, hiding the
previousone. Thel nheri t ed keyword will not jump to the inherited method, if virtual was used.

The following code iswrong:

Type
oj Parent = d ass
Procedure MyProc; virtual;
end;
oj Child = dass(Obj PArent)
Procedure MyProc; virtual;
end;

56

CHAPTER 6. CLASSES

The compiler will produce awarning:
Warning: An inherited method is hidden by OBJCH LD. MYPRCC

The compiler will compileit, but using I nher i t ed can produce strange effects.
The correct declaration is as follows:
Type Obj Parent = d ass
Procedure MyProc; virtual;
end;
Qbj Child = d ass(Obj PArent)
Procedure MyProc; overri de;
end;

Thiswill compile and run without warnings or errors.

6.3.3 Class methods

Class methods are methods that do not have an instance, but which follow the scoping and inheritance
rules of aclass. They can be called from inside a regular method, but can also be called using a class
identi er:

Var
ACl ass : Td ass;

begi n

i f ConpareText (Ad ass. C assNane, ' TCOVPONENT) =0 t hen

But calling them from an instance is also possible:

Var
M/ ass : Tbj ect;

begi n

if Myd ass. d assNanei s(’ TCOWONENT') t hen

Inside a class method, the <var>self</var> identi er pointsto the VMT table of the class. No elds,
properties or regular methods are available inside a class method. Accessing a regular property or
method will result in a compiler error. The reverse is possible: a class method can be called from a
regular method.

Note that class methods can be virtual, and can be overridden.
Class methods cannot be used as read or write speci ers for a property.

6.3.4 Message methods

New in classes are nessage methods. Pointers to message methods are stored in a special table,
together with theinteger or string cnstant that they were declared with. They are primarily intended to

57

CHAPTER 6. CLASSES

ease programming of callback functionsin several GUI toolkits, suchasW n32 or GTK. In difference
with Delphi, Free Pascal also accepts strings as message identi ers.

Message methods that are declared with an integer constant can take only one var argument (typed
or not):

Procedure TMyObj ect. MyHandl er (Var Msg); Message 1;

The method implementation of amessage function is no different from an ordinary method. It isalso
possibleto call amessage method directly, but thisshould not be done. Instead, the TObj ect . Di spat ch
method should be used.

The TOBj ect . Di spat ch method can be used to call amessage handler. It is declared in the
system unit and will accept avar parameter which must have at the rst position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record
MSGA D : Cardi nal
Data : Pointer;
Var
Msg : TMSg;

MyQbj ect . Di spatch (MsQ);

In this example, the Di spat ch method will look at the object and al it’s ancestors (starting at the
object, and searching up the class tree), to see if a message method with message M5GA D has been
declared. If such amethod isfound, it is called, and passed the Ms g parameter.

If no such method is found, Def aul t Handl er iscaled. Def aul t Handl er isavirtua method
of TObj ect that doesn’t do anything, but which can be overridden to provide any processing that
might be needed. Def aul t Handl er isdeclared asfollows:

procedure defaul t handl er (var nessage);virtual;

In addition to the message method with al nt eger identi er, Free Pascal also supports a message
method with a string identi er:

Procedure TMyQbj ect. MySt rHandl er (Var Msg); Message ' OnClick’;

The working of the string message handler is the same as the ordinary integer message handler:

The TOBj ect . Di spat chSt r method can be used to call anessage handler. It isdeclared in
the system unit and will accept one parameter which must have at the rst position a string with the
message | D that should be called. For example:

Type
TMsg = Record
MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;
Var
Msg @ TMSg;

MyQbj ect . Di spatchStr (MsQ);
In this example, the Di spat chSt r method will look at the object and all it's ancestors (starting at

the object, and searching up the class tree), to see if a message method with message MsgSt r has
been declared. If such amethod isfound, it is called, and passed the Msg parameter.

58

Remark:

CHAPTER 6. CLASSES

If no such method isfound, Def aul t Handl er St r iscalled. Def aul t Handl er St r isavirtual
method of TOhj ect that doesn’t do anything, but which can be overridden to provide any processing
that might be needed. Def aul t Handl er St r isdeclared asfollows:

procedure Defaul t Handl er Str(var nessage); virtual;
In addition to this mechanism, a string message method acceptsasel f parameter;
TMyObj ect. StrMsgHandl er(Data : Pointer; Self : TMyQhject); Message

When encountering such a method, the compiler will generate code that |oads the Sel f parameter
into the object instance pointer. The result of thisisthat it is possible to pass Sel f as a parameter to
such a method.

Thetype of the Sel f parameter must be of the same class as the class the method is de ned in.

6.4 Properties

Classes can contain properties as part of their eldslist. A property acts like anormal eld, i.e. its
value can be retrieved or set, but it allows to redirect the access of the eld through functions and
procedures. They provide a means to associate an action with an assignment of or areading from a
class’ éd'. Thisalowsfor e.g. checking that avaue is valid when assigning, or, when reading,
it allows to construct the value on the y. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

[
Properties

»— property de nition — property —identi er L J'
property interface

~—— property speci ers -

. —type identier —

»— property interface — :
L property parameter list J

L index — integerconstant J

»— property parameter list — [77 parameter declaration T] - >

»— property speci ers
Lread speci er J Lwrite speci er J Ldefault speci er J

»— read speci er —read — eld or method — >

»— write speci er —write — eld or method — >

»— default speci er — default — L J
constant —
nodefault

»— eld or method fT eld identier — >
method identi er J

59

"Ondick’;

CHAPTER 6. CLASSES

A read speci fier is either the name of a eld that contains the property, or the name of a
method function that has the same return type as the property type. In the case of asimple type, this
function must not accept anargument. Ar ead speci fi er isoptional, making the property write-
only. Note that class methods cannot be used asread speci ers. A write speci fi er isoptional:
If thereisnowr it e speci fi er,theproperty isread-only. A write speci er is either the name of

a eld, or the name of amethod procedure that accepts as a sole argument a variable of the same type
asthe property. The section (pri vat e, publ i shed) in which the speci ed function or procedure
resides isirrelevant. Usually, however, this will be a protected or private method. Example: Given
the following declaration:;

Type
Myd ass = d ass
Private
Fieldl : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Fieldl wite Field2;
Property Y : Longint Read GetY Wite Sety;
Property Z : Longint Read GetZ
end;
Var MyCd ass : TMyd ass;

The following are valid statements:

WitelLn ("X : ', MWd ass. X);
WiteLn ('Y : ', Wdass.Y);
WiteLn ("Z : ', Wd ass. 2);
Md ass. X : = 0;
Md ass. Y := 0;

But the following would generate an error:
M d ass. Z : = 0;

because Z is aread-only property. What happens in the above statements is that when a value needs
to be read, the compiler inserts acall to the various get NNN methods of the object, and the result of
this call is used. When an assignment is made, the compiler passes the value that must be assigned
as a paramater to the various set NNN methods. Because of this mechanism, properties cannot be
passed as var arguments to a function or procedure, since there is no known address of the property
(at least, not always). If the property de nition contains an index, then the read and write speci ers
must be a function and a procedure. Moreover, these functions require an additional parameter : An
integer parameter. This allows to read or write several properties with the same function. For this,
the properties must have the same type. The following is an example of a property with an index:

{$node obj f pc}
Type TPoint = C ass(TObj ect)
Private
FX, FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);

60

CHAPTER 6. CLASSES

Publ i c
Property X : Longint index 1 read GetCoord Wite Set Coord;
Property Y : Longint index 2 read Get Coord Wite Set Coord;
Property Coords[Index : Integer]:Longint Read Get Coord;
end;
Procedure TPoi nt. Set Coord (Index : Integer; Value : Longint);
begi n
Case | ndex of
1: FX := Val ue;
2 : FY := Vval ue;

end;
end;
Function TPoint. Get Coord (I Ndex : Integer) : Longint;
begi n
Case I ndex of
1: Result := FX
2 . Result := FY;
end;
end;
Var P : TPoint;
begi n
P := TPoi nt.create;
P.X := 2;
P.Y .= 3;
Wth P do
WitelLn ("X=",X "' Y=,Y);
end.

When the compiler encounters an assignment to X, then Set Coor d iscalled with as rst parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value of X, the compiler calls Get Coor d and passes it index 1. Indexes can only be
integer values. Array propertie also exist. These are properties that accept an index, just as an array
does. Only now the index doesn’'t have to be an ordinal type, but can be any type.

A read specifier foranarray property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, one cannot specify eldsas r ead specifiers.

Awite specifier foranarray property isthe name of a method procedure that accepts two
arguments: The rst argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type TIntList = O ass

Private

Function Getlint (I : Longint) : |ongint;

Function GetAsString (A : String) : String;
Procedure Setlnt (I : Longint; Value : Longint;);
Procedure Set AsString (A : String; Value : String);
Publ i c

Property Items [i : Longint] : Longint Read Getlnt

Wite Setlnt;
Property Stritens [S: String] : String Read Get AsString
Wite SetAsstring;
end;
Var AlntList : TIntList;

61

CHAPTER 6. CLASSES

Then the following statements would be valid:

AlntList.ltens[26] := 1;
AlntList.Strlitems['twenty-five'] :="'zero’;

WiteLn ("Item26 : ’',AlntList.Itens[26]);

Witeln ("lItem25 : ', AlntList.Stritens[twenty-five']);

While the following statements would generate errors:

AlntList.ltems[twenty-five'] := 1;
AlntList.Stritens[26] := ' zero’;

Because the index types are wrong. Array properties can be declared asdef aul t properties. This
means that it is not necessary to specify the property name when assigning or reading it. If, in the
previous example, the de nition of the items property would have been

Property Itens[i : Longint]: Longint Read Getlnt
Wite Setint; Default;
Then the assignment
AlntList.ltens[26] := 1;

Would be equivalent to the following abbreviation.
AlntList[26] := 1;

Only one default property per classis allowed, and descendent classes cannot redeclare the default
property.

62

Chapter 7

| nterfaces

7.1 Denition

As of version 1.1, FPC supports interfaces. Interfaces are an aternative to multiple inheritance
(where a class can have multiple parent classes) as implemented for instance in C++. An interface
is basically a named set of methods and properties: A class that implements the interface provides
all the methods as they are enumerated in the Interface de nition. It is not possible for a class to
implement only part of theinterface: it isall or nothing.

Interfaces can also be ordered in a hierarchy, exactly as classes: An interface de nition that inherits
from another interface de nition contains all the methods from the parent interface, as well as the
methods explicitly named in the interface de nition. A class implementing an interface must then
implement all members of the interface as well as the methods of the parent interface(s).

An interface can be uniquely identi ed by a GUID (GUID is an acronym for Globally Unique |den-
ti er, a128-hit integer guaranteed always to be unique 1. Especially on Windows systems, the GUID
of an interface can and must be used when using COM.

The de nition of an Interface has the following form:

[
Interfacetype

-»— Interface — end — >

LheritageJ L[' fGUID’]ﬁl Lcomponent Iist~l

»— heritage — (— interface type identier —) — >

»— component list method de nition J >
[property de nition —

Along with this de nition the following must be noted:

¢ Interfaces can only be used in DELPHI mode or in OBJFPC mode.

e There are no visibility speci ers. All members are public (indeed, it would make little sense
to make them private or protected).

1In theory, of course.

63

CHAPTER 7. INTERFACES

e The properties declared in an interface can only have methods as read and write speci ers.

e There are no constructors or destructors. Instances of interfaces cannot be created directly:
instead, an instance of a class implementing the interface must be created.

e Only calling convention modi ers may be present in the de nition of a method. Modi ers
asvirtual ,abstract ordynani c, and henceaso overri de cannot be present in the
de nition of ainterface de nition.

7.2 Interfaceidenti cation: A GUID

An interface can be identi ed by a GUID. Thisis a 128-bit number, which is represented in a text
representation (a string literal):

[’ { HHHHHHHH HHHH HHHH HHHH- HHHHHHHHHHHHL]

Each H character represents a hexadecimal number (0-9,A-F). The format contains 8-4-4-4-12 num-
bers. A GUID can aso be represented by the following record, de ned in the objpas unit (included
automatically when in DELPHI or OBJ FPC mode;

PCGui d
TCQui d

ATGUI d;

packed record

i nt eger of

P

Datal : DWrd;

Data2 : word;

Dat a3 : word;

Datad4 : array[0..7] of byte;

(¢
Q
(2]
= o Il

)
2 (

DWor d;
wor d;
wor d;
array[0..7] of byte;

"EBRSR

~—

end;
A constant of type TGUID can be speci ed using a string literal:

{$node obj f pc}
program test ui d;

Const
MGUD: TGUD = '{10101010-1010-0101-1001-110110110110}";

begi n
end.

Normally, the GUIDs are only used in Windows, when using COM interfaces. More on thisin the
next section.

CHAPTER 7. INTERFACES

7.3 Interfacesand COM

When using interfaces on Windows which should be available to the COM subsystem, the calling
convention should be st dcal | - thisis not the default Free Pascal calling convention, so it should
be speci ed explicitly.

COM does not know properties. It only knows methods. So when specifying property de nitions
as part of an interface de nition, be aware that the properties will only be known in the Free Pascal

compiled program: other Windows programs will not be aware of the property de nitions. For this
reason, property de nitions must always have interface methods as the read/write speci ers.

I nter face implementations

When a class implements an interface, it should implement all methods of the interface. If a method
of an interface is not implemented, then the compiler will give an error. For example:

Type
| MInterface = Interface
Functi on MyFunc : | nteger;
Functi on MySecondFunc : | nteger;
end;

TMyd ass = O ass(TInterfacedObject, | Myl nterface)

Function MyFunc : Integer;
Functi on MyQt her Func : Integer;
end;

Function TMyd ass. MyFunc : | nteger;
begi n
Resul t: =23;
end;
Function TWyd ass. MyQt her Func : | nt eger;
begi n
Resul t: =24;
end;

will result in a compiler error:

Error: No matching inplenmentation for interface nethod
"I Myl nterface. MySecondFunc: Longl nt" found

At the moment of writing, the compiler does not yet support providing aliases for an interface asin
Delphi. i.e. the following will not yet compile:

ype
| MyInterface = Interface
Function MyFunc : |nteger;
end;

TMyd ass = O ass(TInterfacedObject, | Myl nterface)

65

CHAPTER 7. INTERFACES

Function MyQt her Function : |nteger;

/1 The following fails in FPC

Function | Myl nterface. \WFunc = MyQt her Functi on;
end;

This declaration should tell the compiler that the My Func method of thel Myl nt er f ace interface
isimplemented in the MyQt her Funct i on method of the TMyCl ass class.

7.4 CORBA and other Interfaces

COM is not the only architecture where interfaces are used. CORBA knows interfaces, UNO (the
OpenOf ce API) uses interfaces, and Java as well. These languages do not know the | Unknown
interface used as the basis of al interfaces in COM. It would therefore be a bad idea if an inter-
face automatically descended from | Unknown if no parent interface was speci ed. Therefore, a
directive { $| NTERFACES} was introduced in Free Pascal: it speci es what the parent interfaceis
of an interface, declared without parent. More information about this directive can be found in the
Programmers guide.

Note that COM interfaces are by default reference counted. CORBA interfaces are not necessarily
reference counted.

66

file:../prog/prog.html

Chapter 8

EXxpressions

Expressions occur in assignments or in tests. Expressions produce a value, of a certain type. Expres-
sions are built with two components: Operators and their operands. Usually an operator isbinary, i.e.
it requires 2 operands. Binary operators occur always between the operands (asin X/). Sometimes
an operator is unary, i.e. it requires only one argument. A unary operator occurs always before the
operand, asin - X.

When using multiple operands in an expression, the precedence rules of table (8.1) are used. When

Table 8.1: Precedence of operators

Operator Precedence Category

Not, @ Highest (rst) Unary operators

* [/ div nmod and shl shr as Second Multiplying operators
+ - or xor Third Adding operators

< <><><=>1inis Lowest (Last) relational operators

determining the precedence, the compiler uses the following rules:

1. In operations with unequal precedences the operands belong to the operater with the high-
est precedence. For example, in 5* 3+7, the multiplication is higher in precedence than the
addition, so it is executed rst. The result would be 22.

2. If parentheses are used in an expression, their contents is evaluated rst. Thus, 5* (3+7)
would result in 50.

Remark: The order in which expressions of the same precedence are evaluated is not guaranteed to be left-
to-right. In general, no assumptions on which expression is evaluated rst should be made in such a
case. The compiler will decide which expression to evaluate rst based on optimization rules. Thus,
in the following expression:

a:=g9(3) + f(2);

f(2) may be executed before g(3) . This behaviour is distinctly different from Delphior Turbo
Pascal.

If one expression must be executed before the other, it is necessary to split up the statement using
temporary results:

67

CHAPTER 8. EXPRESSIONS

el := g(3);
= el + f(2);

Q
|

8.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what aterm s, is explained below), joined by adding operators.

Expressions
»— expression — simple expression — ’_ J »—
— * — simple expression
<= 4
o>
E>= 4
L <> 4
Ein A4
Lijs 4
»— simple expression term -

+ —

or
Xor —

The following are valid expressions:

GraphResul t <>gr Error

(Dol t Today=Yes) and (Dolt Tonorrow=No);
Day in Wekend

And here are some simple expressions:

A+ B

- Pi

ToBe or Not ToBe

Terms consist of factors, connected by multiplication operators.

[
Terms

t fact >
»— term lec*ora_J

68

CHAPTER 8. EXPRESSIONS

Here are some valid terms:

2 * Pi

ADv B

(Dol t Today=Yes) and (Dolt Tonmorrow=No);

Factors are all other constructions:

[
Factors

»— factor —~ (— expression —) — >
I variable reference —
—— function call —
I unsigned constant —
—— not — factor
— sign — factor —
— set constructor —
— value typecast —
L— address factor —

character string —
constant identi er —

»— unsigned constant «ﬁunsigned number — —
Nil —

8.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too).
They are constructed as follows:

[
Function calls

function identi er

—— method designator
+ quali ed method designator —
variable reference

»— actual parameter list — (-)—
L{ expression jJ

»— function call —

L actual parameter list J

The variablereference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A quali ed method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters (unless default
parameter values are used).

69

CHAPTER 8. EXPRESSIONS

2. The types of the parameters must be compatible. For variable reference parameters, the pa-
rameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Depending on the fact of
the function is overloaded (i.e. multiple functions with the same name, but different parameter lists)
the error will be different. There are cases when the compiler will not execute the function call in an
expression. Thisisthe case when assigning a value to a procedural type variable, as in the following
example:

Type

FuncType = Function: Integer;
Var A : Integer,
Function AddOne : | nteger;

begi n
A = A+l;
AddOne : = A
end;
Var F : FuncType;
N : Integer;
begi n
A .= 0;
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N:= AddOne; { N:=1 11}
end.

In the above listing, the assigment to F will not cause the function AddOne to be called. The assign-
ment to N, however, will call AddOne. A problem with this syntax is the following construction:

If F = AddOne Then
DoSonet hi ngHorri bl e;

Should the compiler compare the addresses of F and AddOne, or should it call both functions, and
compare the result ? Free Pascal solves this by deciding that a procedural variable is equivalent to a
pointer. Thus the compiler will give a type mismatch error, since AddOne is considered a call to a
function with integer result, and F is a pointer, Hence a type mismatch occurs. How then, should one
compare whether F points to the function AddOne ? To do this, one should use the address operator

@

If F = @ddOne Then
WitelLn (' Functions are equal’);

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares 2 addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

I f F()=Addone then
WiteLn (' Functions return same values ');

Remark that this behaviour is not compatible with Delphi syntax.

8.3 Set constructors

When a set-type constant must be entered in an expression, a set constructor must be given. In
essence this is the same thing as when atype is de ned, only there is no identi er to identify the set
with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

70

CHAPTER 8. EXPRESSIONS

[
Set constructors

»— set constructor — [—]-
L{ set group TJ

»— set group — expression — L J -
.. — expression

All set groups and set elements must be of the same ordinal type. The empty set isdenoted by [],
and it can be assigned to any type of set. A set group with arange[A. . Z] makes all valuesin the
range a set element. If the rst range speci er has a bigger ordinal value than the second the set is
empty, e.g., [Z. . A] denotes an empty set. The following are valid set constructors:

[t oday, t onor r ow

[Monday. . Fri day, Sunday]

[2, 3*2, 6%2, 9*2]
["A..7Z,’a.."2",’0.."9]

8.4 Valuetypecasts

Sometimesiit is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. Thisis done through a value typecast. The syntax diagram for avalue
typecast is as follows:

[
Typecasts

»— value typecast — type identi er — (- expression —) >

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte(’ A)

Char (48)

bool ean(1)

[ongi nt (@Buf f er)

The type size of the expression and the size of the type cast must be the same. That is, the following
doesn’t work:

Integer(’ A)
Char (4875)
bool ean(100)
Wor d(@Buf f er)

Thisisdifferent from Delphi or Turbo Pascal behaviour.

71

CHAPTER 8. EXPRESSIONS

8.5 The @ operator

The address operator @returns the address of a variable, procedure or function. It isused asfollows:

[|
Address factor

»— addressfactor - @ ——— variable reference — »—
—— procedure identi er ——
—— function identi er ———
L quali ed method identier —

The @operator returns atyped pointer if the $T switchison. If the $T switch is off then the address
operator returns an untyped pointer, which is assigment compatible with al pointer types. The type
of the pointer is T , where T is the type of the variable reference. For example, the following will
compile

Program t cast ;
{$T-} { @returns untyped pointer }

Type art = Array[1l..100] of byte;
Var Buffer : longint;
PLargeBuffer : “art;

begi n
PLargeBuf fer := @uffer;
end.

Changing the { $T-} to { $T+} will prevent the compiler from compiling this. It will give a type
mismatch error. By default, the address operator returns an untyped pointer. Applying the address
operator to a function, method, or procedure identi er will give a pointer to the entry point of that

function. The result is an untyped pointer. By default, the address operator must be used if a value
must be assigned to a procedural type variable. This behaviour can be avoided by using the - So or
- S2 switches, which result in amore compatible Delphi or Turbo Pascal syntax.

8.6 Operators

Operators can be classi ed according to the type of expression they operate on. We will discussthem
type by type.

8.6.1 Arithmetic operators

Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain integers or reals.
There are 2 kinds of operators : Binary and unary arithmetic operators. Binary operators are listed
in table (8.2), unary operators are listed in table (8.3). With the exception of Di v and Mbd, which
accept only integer expressions as operands, all operators accept real and integer expressions as
operands. For binary operators, the result type will be integer if both operands are integer type
expressions. If one of the operandsisarea type expression, then the result isreal. Asan exception :
division (/') results alwaysin real values. For unary operators, the result type is always equal to the
expression type. Thedivision (/) and Mod operator will cause run-time errorsif the second argument
iszero. Thesign of the result of aMbd operator isthe same asthe sign of the left side operand of the
Mod operator. In fact, the Mod operator is equivalent to the following operation :

72

CHAPTER 8. EXPRESSIONS

Table 8.2 Binary arithmetic operators

Operator Operation

+

*

/
Dv
Mbd

Addition
Subtraction
Multiplication
Division
Integer division
Remainder

Table 8.3: Unary arithmetic operators

Operator Operation

+

| mod J =1 - (I divJ) *

Sign identity
Sign inversion

but it executes faster than the right hand side expression.

8.6.2 Logical operators

Logical operatorsact ontheindividual bitsof ordinal expressions. Logical operatorsrequire operands
that are of an integer type, and produce an integer type result. The possiblelogical operatorsarelisted
intable (8.4). Thefollowing arevalid logical expressions:

Table 8.4: Logical operators

Operator

not
and
or
xor
shl
shr

A shr 1 {

Not 1 { equals -2}
Not O { equals -1}
Not -1 { equals 0 }
B shl 2 {

1or 2 { equals 3}
3 xor 1 { equals 2}

Operation

Bitwise negation (unary)
Bitwise and

Bitwise or

Bitwise xor

Bitwise shift to the | eft
Bitwise shift to the right

sane as Adiv 2, but faster}

same as B * 4 for integers }

73

Remark:

CHAPTER 8. EXPRESSIONS

8.6.3 Boolean operators
Boolean operators can be considered logical operations on atype with 1 bit size. Therefore the shl
and shr operations have little sense. Boolean operators can only have boolean type operands, and
the resulting type is always boolean. The possible operators are listed in table (8.5)

Table 8.5: Boolean operators

Operator Operation

not logical negation (unary)
and logical and

or logical or

xor logical xor

Boolean expressions are aways evaluated with short-circuit evaluation. This means that from the
moment the result of the complete expression is known, evaluation is stopped and the result is re-
turned. For instance, in the following expression:

B := True or MaybeTrue;
The compiler will never look at the value of MaybeTr ue, sinceit is obvious that the expression will

always betrue. Asaresult of this strategy, if MaybeTr ue isafunction, it will not get called ! (This
can have surprising effects when used in conjunction with properties)

8.6.4 String operators

There is only one string operator : +. It's action is to concatenate the contents of the two strings
(or characters) it stands between. One cannot use + to concatenate null-terminated (PChar) strings.
Thefollowing are valid string operations:

"This is ' + "VERY ' + 'easy !’
D rname+' \’

Thefollowing is not:
Var D rnane = Pchar;
Dirnane := Dirname+' \’;

Because Di r namne isanull-terminated string.

8.6.5 Set operators

The following operations on sets can be performed with operators: Union, difference and intersec-
tion. The operators needed for thisare listed in table (8.6). The set type of the operands must be the
same, or an error will be generated by the compiler.

8.6.6 Relational operators
The relational operators are listed in table (8.7) Left and right operands must be of the same type.

74

CHAPTER 8. EXPRESSIONS

Table 8.6: Set operators

Operator Action

+

*

Union
Difference
Intersection

Table 8.7: Relational operators

Operator
<>

<

>

<=

>=

Action

Equal

Not equal

Stricty less than
Strictly greater than
Lessthan or equal
Greater than or equal
Element of

Only integer and real types can be mixed in relational expressions. Comparing strings is done on
the basis of their ASCII code representation. When comparing pointers, the addresses to which they
point are compared. This also is true for PChar type pointers. To compare the strings the Pchar

point to, the St r Conp function from the strings unit must be used. Thei n returns Tr ue if the
left operand (which must have the same ordinal type as the set type, and which must be in the range
0..255) is an element of the set which is the right operand, otherwise it returns Fal se

75

Chapter 9

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
a program or unit. Each statement can be labeled and jumped to (within certain limits) with Got o
statements. This can be seen in the following syntax diagram:

[
Statements

structured statement

»— statement — L J >
label —: — simple statementj
asm statement —

A label can be anidenti er or an integer digit.

9.1 Simplestatements

A simple statement cannot be decomposed in separate statements. There are basically 4 kinds of
simple statements:

[
Simple statements

»— simple statement — assignment statement —
procedure statement
goto statement —

raise statement —

Of these statements, the raise statement will be explained in the chapter on Exceptions (chapter 13,
page 113)

9.1.1 Assignments
Assignments give avalue to a variable, replacing any previous value the variable might have had:

76

CHAPTER 9. STATEMENTS

[
Assignments

»— assignment statement fIvariabIe reference — = — expression —— <
function identi er +=

*=

/=

In addition to the standard Pascal assignment operator (: =), which simply replaces the value of
the varable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some c-style constructions. All available constructs are listed in table (9.1). For these

Table 9.1: Allowed C constructs in Free Pascal

Assignment Result
a+=b Addsb to a, and storestheresult in a.
a-=b Substracts b from a, and storestheresult in a.
a*=b Multipliesa with b, and storestheresultin a.
al=b Divides a through b, and storestheresultin a.

constructs to work, the - Sc command-line switch must be speci ed.

Remark: These constructions are just for typing convenience, they don’'t generate different code. Here are
some examples of valid assignment statements:

X 1= X+Y;

X+=Y; { Sane as X := X+Y, needs -Sc comrand |ine swtch}
X =2; { Sane as X := X/ 2, needs -Sc comand |ine switch}
Done : = Fal se;

Weat her : = Good;

MPi = 4* Tan(1);

9.1.2 Procedure statements

Procedure statements are calls to subroutines. There are different possibilities for procedure calls: A
normal procedure call, an object method call (fully quali ed or not), or even a call to a procedural
type variable. All types are present in the following diagram.

[
Procedur e statements

»— procedure statement ——— procedure identi er
—— method identi er
I quali ed method identi er —
L—— variable reference

L actual parameter list J

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

77

CHAPTER 9. STATEMENTS

Usage;
WitelLn(’ Pascal is an easy |language !’);
Doit();

9.1.3 Goto statements
Free Pascal supports the got o jump statement. Its prototype syntax is

[
Goto statement

»— goto statement — goto — label o

When using got o statements, the following must be kept in mind:

1. The jump label must be de ned in the same block asthe Got o statement.
2. Jumping from outside aloop to the inside of aloop or vice versa can have strange effects.

3. To be ableto usethe Got o statement, the - Sg compiler switch must be used.
Cot o statements are considered bad practice and should be avoided as much as possible. It isalways
possible to replace a got o statement by a construction that doesn’t need a got o, athough this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
Statement:

| abel

j unpto;
Junpto :

St at enment ;

Cot 0 j unpt o;

9.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

[
Structured statements

»— structured statement —- compound statement — >
repetitive statement —
conditional statement
exception statement —
with statement —

Conditional statementscomein2 avours:

78

CHAPTER 9. STATEMENTS

[
Conditional statements

»— conditional statement T if statement J >
case statement —

Repetitive statements comein 3 avours:

[
Repetitive statements

repeat statement

»— repetitive statement f«{ for statament — j >
while statement

The following sections deal with each of these statements.

9.2.1 Compound statements

Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywords Begi n and End. The Last statement doesn't need to be followed by a semicolon,
athough it is allowed. A compound statement is a way of grouping statements together, executing
the statements sequentially. They are treated as one statement in cases where Pascal syntax expects
1 statement, suchasini f ... then statements.

[
Compound statements

»— compound statement — begin fT statement —- end — »—

’

9.2.2 The Case statement
Free Pascal supportsthe case statement. Its syntax diagramis

[
Case statement

»— case statement — case — expression — of sﬁ:ase1 L J L J end —<
- else part— L; -

=»— case ‘T constant L J . — statement >
.. —constant —

»— else part — else — statement -

79

CHAPTER 9. STATEMENTS

The constants appearing in the various case parts must be known at compile-time, and can be of the
following types: enumeration types, Ordinal types (except boolean), and chars. The expression must
be also of thistype, or acompiler error will occur. All case constants must have the same type. The
compiler will evaluate the expression. If one of the case constants values matches the value of the
expression, the statement that follows this constant is executed. After that, the program continues
after the nal end. If none of the case constants match the expression value, the statement after
the el se keyword is executed. This can be an empty statement. If no else part is present, and no
case constant matches the expression value, program ow continues after the nal end. The case
statements can be compound statements (i.e. abegi n. . End block).

Remark: Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;

Case i of

3 : DoSonet hi ng;

1..5 : DoSonet hi ngEl se;
end;

The compiler will generateaDupl i cat e case | abel error when compiling this, because the 3
also appears (implicitly) intherange 1. . 5. Thisissimilar to Delphi syntax.

The following are valid case statements:

Case C of
"a'’ : WiteLn (' A pressed’);
b’ : WitelLn (' B pressed);
"c' . WitelLn (' C pressed);
el se
WiteLn ('unknown letter pressed : ',0);
end;

Or

Case C of

) 1)))) ’ 1)

a,'e,’'i’",’0,'u WiteLn (' vowel pressed);
y’ WiteLn (’ This one depends on the | anguage’);
el se
WitelLn (' Consonant pressed’);
end;

Case Nunber of

1..10 : WiteLn (' Small nunber’);
11..100 : WiteLn ('’ Normal, nedium nunber’);
el se

WitelLn (' HUGE nunber’);

end;

9.2.3 Thelf..then..el se statement
Thelf .. then .. el se.. prototypesyntaxis

[
If then statements

80

CHAPTER 9. STATEMENTS

»— if statement — if — expression — then — statement

L else — statement J

The expression between thei f and t hen keywords must have a boolean return type. If the expres-
sion evaluatesto Tr ue then the statement following t hen is executed.

If the expression evaluatesto Fal se, then the statement following el se is executed, if it is present.

Be aware of the fact that the boolean expression will be short-cut evaluated. (Meaning that the
evaluation will be stopped at the point where the outcome is known with certainty) Also, before
the el se keyword, no semicolon (;) is allowed, but al statements can be compound statements.
Innested I f.. then .. el se constructs, some ambiguity may araise as to which el se
statement pairs with which i f statement. Theruleisthat theel se keyword matchesthe rst i f
keyword not already matched by an el se keyword. For example:

I f expl Then
I f exp2 then
Statl
el se
st at 2;

Despite it’s appearance, the statement is syntactically equivalent to

I f expl Then
begin
I f exp2 then
Statl
el se
stat 2
end;

and not to

{ NOT EQUI VALENT }
If expl Then
begin
I f exp2 then
Statl
end
el se
stat 2

If it isthislatter construct is needed, thebegi n and end keywords must be present. When in doubt,
it is better to add them.
Thefollowing isavalid statement:
I f Today in [Mnday..Friday] then
WiteLn (' Must work harder’)

el se
WiteLn (' Take a day off.’);

9.2.4 The For..to/ downto. . do statement

Free Pascal supports the For loop construction. A for loop is used in case one wants to calculated
something a xed number of times. The prototype syntax is as follows:

81

CHAPTER 9. STATEMENTS

[
For statement

»— for statement — for — control variable — := — initial value T to f—r
downto —
— nal value —do — statement -

»— control variable — variable identi er -

»— initial value — expression -

»— nal value — expression —

St at ement can be acompound statement. When this statement is encountered, the control variable
isinitialized with theinitial value, and is compared with the nal value. What happens next depends
on whether t o or downt o is used:

1. Inthe case To isused, if theinitial value is larger than the nal valuethen St at enment will
never be executed.

2. Inthe case DownTo is used, if theinitial valueis less than the nal value then St at ement
will never be executed.

After this check, the statement after Do is executed. After the execution of the statement, the control
variable isincreased or decreased with 1, depending on whether To or Downt o is used. The control
variable must be an ordinal type, no other types can be used as countersin aloop.

Remark: Contrary to ANSI pascal speci cations, Free Pascal rst initializes the counter variable, and only
then calculates the upper bound.

Thefollowing are valid loops:

For Day := Monday to Friday do Wrk;

For | := 100 downto 1 do
WiteLn (’ Counting down : ' ,i);
For I :=1to 7*dwarfs do Ki ssDwarf(i);

If the statement is a compound statement, then the Break (??) and Continue (??) reserved words
can be used to jump to the end or just after the end of the For statement.

9.25 TheRepeat..until statement

The r epeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax of the Repeat . . unti | statement
is

[
Repeat statement

»— repeat statement — repeat T statement]— until — expression -

82

CHAPTER 9. STATEMENTS

Thiswill executethe statementsbetweenr epeat andunt i | uptothemoment when Expr essi on
evaluatesto Tr ue. Sincethe expr essi on is evaluated after the execution of the statements, they
are executed at least once. Be aware of the fact that the boolean expression Expr essi on will be
short-cut evaluated. (Meaning that the evaluation will be stopped at the point where the outcome is
known with certainty) The following arevalid r epeat statements

r epeat

Witeln ("I =",i);
I 1= 1+2;

until 1>100;

repeat

X:= X2

until x<10e-3

The Break (??) and Continue (??) reserved words can be used to jump to the end or just after the
endof therepeat .. until statement.

9.2.6 The Wi |l e. . do statement

A whi | e statement is used to execute a statement as long as a certain condition holds. This may
imply that the statement is never executed. The prototype syntax of the Whi | e. . do statement is

[|
While statements

»— while statement — while — expression — do — statement >

This will execute St at enent aslong as Expr essi on evaluatesto Tr ue. Since Expr essi on
is evaluated before the execution of St at enent , it is possible that St at enent isn’t executed at
al. St at ement can be a compound statement. Be aware of the fact that the boolean expression
Expr essi on will be short-cut evaluated. (Meaning that the evaluation will be stopped at the point
where the outcome is known with certainty) The following are valid whi | e statements:

I 1= 1+2;

whi l e i <=100 do
begin
WiteLn ("I = ,i);
I = 1+2;
end;

X = X 2;

whi l e x>=10e-3 do
X = X 2;

They correspond to the example loops for ther epeat statements.

If the statement is a compound statement, then the Break (??) and Continue (??) reserved words
can be used to jump to the end or just after the end of the Whi | e statement.

9.2.7 The Wt h statement

Thewi t h statement serves to access the elements of arecord or object or class, without having to
specify the name of the each time. The syntax for awi t h statement is

83

CHAPTER 9. STATEMENTS

[
With statement

»— with statement fT variable reference fT do — statement — >

1

The variable reference must be a variable of a record, object or class type. Inthewi t h statement,
any variable reference, or method reference is checked to seeif it isa eld or method of the record
or object or class. If so, then that eld is accessed, or that method is called. Given the declaration:

Type Passenger = Record
Name : String[30];
Flight : String[10];
end;

Var TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustoner. Nane := 'M chael ’;
TheCustoner. Flight :="'PS901";
and

Wth TheCust oner do

begi n
Narme := 'M chael ' ;
Flight := 'PS901’;
end;

The statement

Wth A B,C, D do Statenent;
isequivaent to

Wth A do
Wth B do
Wth C do
Wth D do Statenent;

Thisasoisaclear example of the fact that the variables aretried last to rst, i.e., when the compiler
encounters a variable reference, it will rst check if itisa eld or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

Program testw
Type AR = record
X, Y : Longint;
end;
PAR = Record;

Var ST : Ar;
begi n
S X:=1,SY :=1,;

CHAPTER 9. STATEMENTS

TX:=2;T.Y := 2
Wth S, T do
WiteLn (X' ',Y);
end.

The output of this program is
22

Showing thusthat the X, Y inthe Wi t eLn statement match the T record variable.

Remark: When using aW t h statement with a pointer, or aclass, it is not permitted to change the pointer or
the classin the W t h block. With the de nitions of the previous example, the following illustrates
what it is about:

Var p : PAR

begi n
Wth P* do
begin
/1 Do some operations
P: =t her P;
X:=0.0; // Wong X will be used !!
end;

The reason the pointer cannot be changed is that the address is stored by the compiler in atemporary

register. Changing the pointer won't change the temporary address. The sameistrue for classes.

9.2.8 Exception Statements

Free Pascal supports exceptions. Exceptions provide a convenient way to program error and error-
recovery mechanisms, and are closely related to classes. Exception support is explained in chapter
13, page 113

9.3 Assembler statements

An assembler statement allows to insert assembler code right in the pascal code.

[
Assembler statements

»— asm statement — asm — assembler code — end — L J <
registerlist

»— registerlist - [ff stringconstant fT 1-

More information about assembler blocks can be found in the Programmers guide. Theregister listis
used to indicate the registersthat are modi ed by an assembler statement in the assembler block. The
compiler stores certain resultsin theregisters. If the registersare modi ed in an assembler statement,

85

file:../prog/prog.html

CHAPTER 9. STATEMENTS

the compiler should, sometimes, be told about it. The registers are denoted with their Intel names
for the 1386 processor, i.e.,,” EAX' ," ESI’ etc... Asan example, consider the following assembler
code:

asm
Movl $1, %ebx
Movl $0, %eax
addl %ax, Y&bx
end; ['EAX ,'EBX];

Thiswill tell the compiler that it should save and restore the contents of the EAX and EBX registers
when it encounters this asm statement.

Free Pascal supports various styles of assembler syntax. By default, AT&T syntax is assumed for the
80386 and compatibles platform. The default assembler style can be changed with the { $asnmode
xxx} switch in the code, or the - R command-line option. More about this can be found in the
Programmers guide.

86

file:../prog/prog.html

Remark:

Chapter 10

Using functions and procedures

Free Pascal supportsthe use of functions and procedures, but with some extras: Function overloading
is supported, aswell as Const parameters and open arrays.

In many of the subsequent paragraphs the words pr ocedur e and f unct i on will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

10.1 Procedure declaration

A procedure declaration de nes an identi er and associates it with a block of code. The procedure
can then be called with a procedure statement.

[
Procedure declaration

»— procedure header — procedure fﬁ identi er fﬁ
quali ed method identi er —

»—— formal parameter list

Lmodi ers J

»— procedure declaration — procedure header — ; — subroutine block - ; ——»«

block
I external directive —
—— asm block ——
forward

»— subroutine block —

See section 10.3, page 88 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following isavalid procedure :

Procedure DoSonet hing (Para : String);

begi n

Witeln (' Got paraneter : ', Para);

Witeln (' Paraneter in upper case : ', Upper(Para));
end;

Note that it is possible that a procedure calls itself.

87

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

10.2 Function declaration

A function declaration de nes an identi er and associates it with a block of code. The block of
code will return aresult. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

[
Function declaration

»— function declaration — function header — ; — subroutine block — ; — >
»— function header — function identi er
[quali ed method identi er
»— formal parameter list — : — result type — L J >
modi ers
»— subroutine block — block — >
external directive
asm block
forward —

The result type of a function can be any previously declared type. contrary to Turbo pascal, where
only simple types could be returned.

10.3 Parameter lists

When arguments must be passed to afunction or procedure, these parameters must be declared in the
formal parameter list of that function or procedure. The parameter list is a declaration of identi ers
that can be referred to only in that procedure or function’s block.

[
Parameters

»— formal parameter list — (‘f parameter declaration T) >

constant parameter —

»— parameter declaration T value parameter j -
variable parameter —

Constant parameters and variable parameters can also be unt yped parametersif they have no type
identi er.

As of version 1.1, Free Pasca supports default values for both constant parameters and value pa
rameters, but only for smple types. The compiler must be in OBJFPC or DELPHI mode to accept
default values.

88

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

10.3.1 Value parameters
Value parameters are declared as follows:

[
Value parameters

»— value parameter — identi er list —: ﬁ parameter type —
array — of

identi er —: — parameter type — = — default parameter value

When parameters are declared as value parameters, the procedure gets a copy of the parameters that
the calling block passes. Any modi cations to these parameters are purely local to the procedure's
block, and do not propagate back to the calling block. A block that wishes to call a procedure with
value parameters must pass assignment compatible parameters to the procedure. This means that the
types should not match exactly, but can be converted (conversion code is inserted by the compiler
itself)

Care must be taken when using value parameters. Value parameters makes heavy use of the stack,
especially when using large parameters. Thetotal size of all parametersin the formal parameter list
should be below 32K for portability’s sake (the Intel version limits this to 64K).

Open arrays can be passed as value parameters. See section 10.3.5, page 91 for more information on
using open arrays.

For aparameter of asimpletype (i.e. not astructured type), adefault value can be speci ed. Thiscan

be an untyped constant. If the function call omits the parameter, the default value will be passed on
to the function. For dynamic arrays or other types that can be considered as equivalent to a pointer,
the only possible default valueisNi | .

The following example will print 20 on the screen:
program t est p;

Const
MyConst = 20;

Procedure MyReal Func(l : Integer = MyConst);

begi n
Witeln(’ Function received : ',1);
end;

begi n
M/Real Func;
end.

10.3.2 Variable parameters

Variable parameters are declared as follows:

[
Variable parameters

89

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

»— variable parameter — var — identi er list L

: ﬁ parameter type J
array — of —

When parameters are declared as variable parameters, the procedure or function accessesimmediatly
the variable that the calling block passed in its parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to accessthe variable’'svalue. From this, it follows that
any changes made to the parameter, will propagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass a parameter of
exactly the same type as the declared parameter’s type. If it does not, the compiler will generate an
error.

Variable and constant parameters can be untyped. In that case the variable has no type, and hence
is incompatible with all other types. However, the address operator can be used on it, or it can be
can passed to a function that has aso an untyped parameter. If an untyped parameter is used in an
assigment, or avalue must be assigned to it, a typecast must be used.

File type variables must always be passed as variable parameters.

Open arrays can be passed as variable parameters. See section 10.3.5, page 91 for more information
on using open arrays.

Note that default values are not supported for variable parameters. Thiswould make little sense since
it defeats the purpose of being able to pass a value back to the caller.

10.3.3 Out parameters

Out parameters (output parameters) are declared as follows:

[
Out parameters

»— Oout parameter — out — identi er list L

: —ﬁ parameter type J
array — of

The purpose of an out parameter isto pass values back to the calling routine: The variableis passed
by reference. The initial value of the parameter on function entry is discarded, and should not be
used.

If avariable must be used to pass a value to a function and retrieve data from the function, then a
variable parameter must be used. If only avalue must be retrieved, aout parameter can be used.

Needless to say, default values are not supported for out parameters.

10.3.4 Constant parameters

In addition to variable parameters and value parameters Free Pascal also supports Constant parame-
ters. A constant parameter as can be speci ed asfollows:

[
Constant parameters

90

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

»constant parameter — const identi er list L J >
- parameter type
T [array — of j

identi er —: — parameter type — = — default parameter value

A constant argument is passed by referenceiif it's sizeislarger than a pointer. It is passed by vaueif
the sizeisequal or islessthen the size of a native pointer. This means that the function or procedure
receives a pointer to the passed argument, but it cannot be assigned to, this will result in a compiler
error. Furthermore a const parameter cannot be passed on to another function that requires avariable
parameter. The main use for thisis reducing the stack size, hence improving performance, and still
retaining the semantics of passing by value...

Constant parameters can aso be untyped. See section 10.3.2, page 89 for more information about
untyped parameters.

Asfor value parameters, constant parameters can get default values.

Open arrays can be passed as constant parameters. See section 10.3.5, page 91 for more information
on using open arrays.

10.3.5 Open array parameters

Free Pascal supports the passing of open arrays, i.e. a procedure can be declared with an array
of unspeci ed length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index O, and last element index
Hi gh(par enet er) . For example, the parameter

Row : Array of I|nteger;
would be equivaent to
Row : Array[O0..N 1] of Integer;

Where N would be the actual size of the array that is passed to the function. N- 1 can be calculated
as Hi gh(Row) . Open parameters can be passed by value, by reference or as a constant parameter.
In the latter cases the procedure receives a pointer to the actua array. In the former case, it receivesa
copy of the array. In afunction or procedure, open arrays can only be passed to functions which are
also declared with open arrays as parameters, not to functions or procedures which accept arrays of
xed length. The following is an example of afunction using an open array:

Function Average (Row : Array of integer) : Real;

Var | : longint;
Temp : Real;
begi n
Tenp : = Row 0] ;
For I := 1 to Hi gh(Row) do

Tenp := Tenp + RowWi];
Average : = Tenp / (H gh(Row)+1);
end;

10.3.6 Array of const

In Object Pascal or Delphi mode, Free Pascal supportsthe Array of Const construction to pass
parameters to a subroutine.

91

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

Thisis aspecial case of the Open ar r ay construction, where it is allowed to pass any expression
in an array to afunction or procedure.

In the procedure, passed the arguments can be examined using a specia record:

Type
PVar Rec = ~TVar Rec;
TVar Rec = record
case VType : Longint of

vt | nt eger (M nteger: Longint);
vt Bool ean (VBool ean: Bool ean);
vt Char (VChar: Char);
vt Ext ended (VExt ended: PExt ended);
vt String (VString: PShortString);
vt Poi nt er (VPointer: Pointer);
vt PChar (VPChar: PChar);
vt Obj ect (VObj ect: TObject);
vt O ass . (VO ass: Td ass);
vt Ansi String : (VAnsi String: Pointer);
viWwdeString : (VWdeString: Pointer);
vt | nt 64 : (VInt64: Plnt64);

end;

Inside the procedure body, the array of const is equivalent to an open array of TVarRec:

Procedure Testit (Args: Array of const);

Var | | ongi nt;
begi n
If H gh(Args)<0 then
begin
Witeln (' No agunents’);
exit;
end;
Witeln (' Got ', H gh(Args)+1,’ arguments :’);
For i:=0 to Hi gh(Args) do
begin
wite ("Argunent ',i,’ has type ');

case Args[i].vtype of

vtint eger

Witeln ("Integer, Value :’,args[i].vinteger);
vt bool ean

Witeln (' Boolean, Value :’,args[i].vbool ean);
vt char :

Witeln (' Char, value :
vt ext ended

",args[i].vchar);

Witeln (’ Extended, value : ',args[i].VExtended");
vt String :
Witeln (" ShortString, value :’,args[i].VString");
vt Poi nt er :
Witeln (' Pointer, value : ', Longint(Args[i].VPointer));
vt PChar
Witeln (" PCHar, value : ', Args[i].VPChar);
vt Obj ect

92

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

Witeln (" Qoject, nane : ', Args[i].VObject.d assnane);
vt C ass :
Witeln (' Cass reference, nanme :’,Args[i].Vd ass. d assnane) ;

vt Ansi String :
Witeln (" Ansi String, value :',Ansi String(Args[!]. VAnsi Str
el se
Witeln (" (Unknown) : ’',args[i].vtype);
end;
end;
end;

In code, it is possible to pass an arbitrary array of elements to this procedure:

S: =" Ansistring 1';

T:="Ansi String 2';

Testit ([]);

Testit ([1,2]);

Testit (['A,'B1]);

Testit ([TRUE, FALSE, TRUE]);

Testit (['String ,’ Another string']);
Testit ([S T]) ;

Testit ([P1,P2]);

Testit ([@estit,Nil]);
Testit ([Ohj A ObjB]);
Testit ([1.234,1.234]);
Testlt ([Ad ass]);

If the procedure is declared with the cdecl modi er, then the compiler will pass the array asa C
compiler would passit. This, in effect, emulates the C construct of a variable number of arguments,
as the following example will show:

program t est aocc;
{$node obj f pc}

Const
P : Pchar = 'exanple’;
Frmt : PChar =

"This % uses printf to print numbers (%) and strings.’ #10;

/1l Declaration of standard C function printf:

procedure printf (fm: pchar; args : array of const);cdecl; external 'c’;
begi n

printf(Fnt,[P, 123]);

end.

Remark that thisis not true for Delphi, so code relying on this feature will not be portable.

10.4 Function overloading

Function overloading simply means that the same function is de ned more than once, but each time
with a different formal parameter list. The parameter lists must differ at least in one of it's elements
type. When the compiler encounters a function call, it will look at the function parameters to decide

93

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

which one of the de ned functionsit should call. This can be useful when the same function must be
de ned for different types. For example, in the RTL, the Dec procedure could be de ned as:

Dec(Var | Longi nt ; decrenent : Longint);
Dec(Var | Longint);
Dec(Var | Byt e; decrement : Longint);

I Byt e);

Dec(Var

When the compiler encounters a call to the dec function, it will rst search which function it should
use. It therefore checks the parameters in a function call, and looks if there is a function de nition
which matches the speci ed parameter list. If the compiler nds such a function, a cal is inserted
to that function. If no such function is found, a compiler error is generated. functions that have a
cdecl modi er cannot be overloaded. (Technically, because this modi er prevents the mangling of
the function name by the compiler).

Prior to version 1.9 of the compiler, the overloaded functions needed to be in the same unit. Now the
compiler will continue searching in other unitsif it doesn't nd a matching version of an overloaded
function in one unit.

The compiler accepts the presence of the over | oad modi er as in Delphi, but it is not required,
unlessin Delphi mode.

10.5 Forward de ned functions

A function can be declared without having it followed by it's implementation, by having it followed
by the f or war d procedure. The effective implementation of that function must follow later in
the module. The function can be used after af or war d declaration as if it had been implemented
aready. The following is an example of aforward declaration.

Program t est f or war d;
Procedure First (n : longint); forward;
Procedure Second;
begi n
WiteLn ("In second. Calling first...");
First (1);
end;
Procedure First (n : longint);
begi n
WiteLn ('First received
end;
begi n
Second;
end.

, N);

A function can be de ned asforward only once. Likewise, in units, itisnot allowed to have aforward
declared function of afunction that has been declared in the interface part. The interface declaration
countsasaf or war d declaration. The following unit will give an error when compiled:

Unit testforward;

i nterface

Procedure First (n : longint);
Procedure Second,

94

Remark:

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

i mpl ement ati on
Procedure First (n : longint); forward;
Procedure Second;
begi n
WiteLn ('In second. Calling first...");
First (1);
end;
Procedure First (n : longint);
begi n
WiteLn ('First received :
end;
end.

,n);

10.6 External functions

The ext er nal modi er can be used to declare a function that resides in an external object le. It
allowsto use the function in some code, and at linking time, the object le containing the implemen-
tation of the function or procedure must be linked in.

[
External directive

-— external directive — external

-

L string constant
% name — string constant ﬂ
index — integer constant

It replaces, in effect, the function or procedure code block. As an example:

pr ogr am CrrodDeno;
{$Linklib c}
Const P : PChar = "This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begi n
WiteLn ('Length of (',p,’) : ',strlen(p))
end.

The parametersin our declaration of the ext er nal function should match exactly the onesin the
declaration in the object le.

If theext er nal modi er isfollowed by a string constant:
external 'Iname’;

Then this tells the compiler that the function resides in library 'Iname’. The compiler will then
automatically link this library to the program.

The name that the function hasin the library can aso be speci ed:
external 'Iname’ name ' Fnane’;
Thistells the compiler that the function residesin library 'Iname’, but with name ' Fname'.The com-

piler will then automatically link thislibrary to the program, and use the correct namefor thefunction.
Under WiNDOWS and 0s/2, the following form can also be used:

95

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

external ’'Inane’ |ndex |nd;

Thistellsthe compiler that the function residesin library 'Iname’, but withindex | nd. The compiler
will then automatically link this library to the program, and use the correct index for the function.

Finally, the external directive can be used to specify the external name of the function :

{$L nyfunc. o}
external nanme ' Fnane’;

This tells the compiler that the function has the name ' Fname'. The correct library or object le (in
this case myfunc.o) must still be linked. so that the function’ Fname’ isincluded in the linking stage.

10.7 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
usetheassenbl er keyword:

[
Assembler functions

»— asm block — assembler — ; — declaration part — asm statement >

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assembler in the Programmers
guide.

10.8 Modi ers

A function or procedure declaration can contain modi ers. Here we list the various possibilities:

[|
Modi ers

»— modi ers -—— public >
+alias —: — string constant —
interrupt —
call modi ers

»— call modi ers ——— register -
—— pascal —
—— cdecl —
—— stdcall
— popstack —]
I saveregisters —
——inline
— safecall —
L— varargs —

Free Pascal doesn’t support al Turbo Pascal modi ers, but does support a number of additional
modi ers. They are used mainly for assembler and reference to C object les.

96

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

10.8.1 alias

Theal i as modi er allows the programmer to specify a different name for a procedure or function.
This is mostly useful for referring to this procedure from assembly language constructs or from
another object le. Asan example, consider the following program:

Program Al i ases;

Procedure Printit;alias : 'DAT ;
begi n
WiteLn ("In Printit (alias : "DOT")’");
end;
begi n
asm
call DAOT
end;
end.

Remark: the speci ed dliasisinserted straight into the assembly code, thusit is case sensitive.

The al i as modi er does not make the symbol public to other modules, unless the routine is also
declared in the interface part of a unit, or the publ i ¢ modi er isused to forceit as public. Consider
the following:

unit testalias;
interface

procedure testroutine;
i mpl enent ati on

procedure testroutine;alias:’ ARoutine’;
begi n

WiteLn(’Hello world’);
end;

end.

Thiswill maketheroutinet est r out i ne available publicly to external object lesuunder the label
name ARout i ne.

10.8.2 cdecl

The cdecl modi er can be used to declare a function that uses a C type calling convention. This

must be used when accessing functions residing in an object le generated by standard C compil-

ers. It allows to use the function in the code, and at linking time, the object le containing the C
implementation of the function or procedure must be linked in. Asan example:

pr ogr am CrrodDeno;

{$LI NKLI B c}

Const P : PChar = "This is fun !’;

Function strlen (P : PChar) : Longint; cdecl; external nane 'strlen’;
begi n

97

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

WiteLn (' Length of (",p,’) : ',strlen(p))
end.

When compiling this, and linking to the C-library, the st r | en function can be called throughout the
program. The ext er nal directive tells the compiler that the function resides in an external object
lebrary with the 'strlen’ name (see 10.6).

Remark: The parametersin our declaration of the Cfunction should match exactly the onesin the declaration
inC.

10.8.3 export

The export modi er is used to export names when creating ashared library or an executable program.

This means that the symbol will be publicly available, and can beimported from other programs. For
more information on this modi er, consult the section on Programming dynamic libraries in the
Programmers guide.

10.8.4 inline

Procedures that are declared inline are copied to the places where they are called. This has the effect
that thereis no actual procedure call, the code of the procedure is just copied to where the procedure
is needed, this results in faster execution speed if the function or procedureis used a lot.

By default, i nl i ne procedures are not alowed. Inline code must be enabled using the command-
lineswitch- Si or { $i nl i ne on} directive.

1. Inline code is NOT exported from a unit. This means that when calling an inline procedure
from another unit, a normal procedure call will be performed. Only inside units, | nl i ne
procedures are really inlined.

2. Recursiveinlinefunctionsare not allowed. i.e. aninline function that callsitself is not allowed.

10.8.5 interrupt

Thei nt errupt keyword is used to declare a routine which will be used as an interrupt handler.
On entry to this routine, all the registers will be saved and on exit, all registers will be restored and
aninterrupt or trap return will be executed (instead of the normal return from subroutine instruction).

On platforms where a return from interrupt does not exist, the normal exit code of routines will be
done instead. For more information on the generated code, consult the Programmers guide.

10.8.6 pascal

The pascal modi er can be used to declare a function that uses the classic pascal type calling
convention (passing parameters from left to right). For more information on the pascal calling con-
vention, consult the Programmers guide.

10.8.7 popstack

Popstack doesthe sameascdecl , namely it tells the Free Pascal compiler that afunction usesthe C
calling convention. In difference with the cdecl modi er, it still mangles the name of the function
asit would for a normal pascal function. With popst ack, functions can be called by their pascal
namesin alibrary.

98

file:../prog/prog.html
file:../prog/prog.html
file:../prog/prog.html

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

10.8.8 public

The Publ i ¢ keyword is used to declare a function globally in aunit. Thisis useful if the function
should not be accessible from the unit le (i.e. another unit/program using the unit doesn’'t see the
function), but must be accessible from the object le. as an example:

Unit soneunit;
i nterface
Function First : Real;
| mpl ement ati on
Function First : Real;
begi n

First := 0;
end;
Function Second : Real; [Public];
begi n

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the function Second, since it
isn't declared in the interface part. However, it will be possible to access the function Second at the
assembly-language level, by using it's mangled name (see the Programmers guide).

10.8.9 register

Ther egi st er keyword isused for compatibility with Delphi. In version 1.0.x of the compiler, this
directive has no effect on the generated code. As of the 1.9.X versions, this directive is supported.
The rst three arguments are passed in registers EAX,ECX and EDX.

10.8.10 saveregisters

If thismodi er is speci ed after a procedure or function, then the Free Pascal compiler will save al
registers on procedure entry, and restore them when the procedure exits (except for registers where
return values are stored).

Thismodi er is not used under normal circumstances, except maybe when calling assembler code.

10.8.11 safecall

This modi er ressembles closely the st dcal | modi er. It sends parameters from right to left on
the stack. The called procedure saves and restores all registers.

More information about this modi er can be found in the Programmers guide, in the section on the
calling mechanism and the chapter on linking.

10.8.12 soft oat

Thismodi er makes sense only on the ARM architecture.

10.8.13 stdcall

This modi er pushes the parameters from right to left on the stack, it also aligns al the parameters
to adefault alignment.

99

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 10. USING FUNCTIONS AND PROCEDURES

More information about this modi er can be found in the Programmers guide, in the section on the
calling mechanism and the chapter on linking.

10.8.14 varargs

This modi er can only be used together with the cdecl modi er, for external C procedures. It
indicates that the procedure accepts a variable number of arguments after the last declared variable.
These arguments are passed on without any type checking. It is equivalent to using thear r ay of
const construction for cdecl procedures, without having to declarethear ray of const. The
square brackets around the variable arguments do not need to be used when this form of declaration
is used.

10.9 Unsupported Turbo Pascal modi ers

Themodi ersthat exist in Turbo pascal, but aren’'t supported by Free Pascal, arelisted intable (10.1).

Table 10.1: Unsupported modi ers

Modi er Why not supported ?
Near Free Pascal isa 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

100

file:../prog/prog.html

Chapter 11

Operator overloading

11.1 Introduction

Free Pascal supports operator overloading. This meansthat it is possible to de ne the action of some
operators on self-de ned types, and thus allow the use of these types in mathematical expressions.

De ning the action of an operator is much like the de nition of a function or procedure, only there
are some restrictions on the possible de nitions, as will be shown in the subseguent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, It is
important to keep in mind that some implicit rules may produce some unexpected results. This will
be indicated.

11.2 Operator declarations

To de ne the action of an operator is much like de ning afunction:;

[
Operator de nitions

arithmetic operator de nition
comparision operator de nition

»T result identi er fT . —result type — ; — subroutine block — >

»— operator de nition — operator «Flssignment operator de nition{»

»— assignment operator de nition —:=— (- value parameter —) >

»— arithmetic operator de nition — + — (— parameter list -) — »—

(— parameter list —) — -

»— comparision operator de nition — =
<

Remark:

CHAPTER 11. OPERATOR OVERLOADING

The parameter list for a comparision operator or an arithmetic operator must always contain 2 pa-
rameters. The result type of the comparision operator must be Bool ean.

When compiling in Del phi mode or Obj f pc mode, the result identi er may be dropped. The
result can then be accessed through the standard Resul t symbol.

If the result identi er is dropped and the compiler is not in one of these modes, a syntax error will
occur.

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be de ned; error conditions are not
checked by the compiler, and the code must take care of all possible cases, throwing arun-time error
if some error condition is encountered.

In the following, the three types of operator de nitionswill be examined. As an example, throughout
this chapter the following type will be used to de ne overloaded operators on :

type
conpl ex = record
re . real;
im: real;
end;

this type will be used in all examples.

The sources of the Run-Time Library contain a unit ucomplex, which contains a complete calculus
for complex numbers, based on operator overloading.

11.3 Assignment operators

The assignment operator de nes the action of a assignent of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and de ne an assignment for that type. For instance,
to be able to assign a newly de ned type’ Complex’

Var
C Z : Complex; /] New type conplex

begi n

Z:=C, |/ assignnments between conpl ex types.
end;
The following assignment operator would have to be de ned:

Qperator := (C: Conplex) z : conplex;

To be able to assign areal type to acomplex type as follows:

var
R : real;
C : conpl ex;

102

Remark:

Remark:

CHAPTER 11. OPERATOR OVERLOADING

begi n
C =R
end;

the following assignment operator must be de ned:
Operator := (r : real) z : conplex;

As can be seen from this statement, it de nes the action of the operator : = with at the right areal
expression, and at the left a complex expression.

an example implementation of this could be as follows:
operator := (r : real) z : conplex;

begi n
z.re:=r;
z.im=0. 0;

end;

As can be seen in the example, the result identi er (z in this case) is used to store the result of
the assignment. When compiling in Delphi mode or objfpc mode, the use of the specia identi er
Resul t isaso allowed, and can be substituted for the z, so the above would be equivalent to

operator := (r : real) z : conplex;

begi n
Result.re: =r;
Resul t.im =0. 0;
end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it nds one that matches the types of the left hand
and right hand expressions. If no such operator isfound, a’type mismatch’ error is given.

The assignment operator is not commutative; the compiler will never reverse the role of the two
arguments. in other words, given the above de nition of the assignment operator, the following is
not possible:

var
R: real;
C : conpl ex;
begi n
R =C
end;

if the reverse assignment should be possible (thisis not so for reals and complex numbers) then the
assigment operator must be de ned for that as well.

The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following de nitions:

operator := (r : real) z : conplex;
function exp(c : conplex) : conplex;

103

CHAPTER 11. OPERATOR OVERLOADING

then the following assignment will give atype mismatch:

Var
ri,r2 : real;

begi n
ri: =exp(r2);
end;

because the compiler will encounter the de nition of the exp function with the complex argument. It
implicitly convertsr2 to acomplex, so it can use the above exp function. The result of this function
isacomplex, which cannot be assigned to rl, so the compiler will give a’type mismatch’ error. The
compiler will not ook further for another exp which has the correct arguments.

It is possible to avoid this particular problem by specifying
ri: =system exp(r2);

An experimental solution for this problem existsin the compiler, but isnot enabled by default. Maybe
someday it will be.

11.4 Arithmetic operators

Arithmetic operators de ne the action of a binary operator. Possible operations are:

multiplication to multiply two types, the* multiplication operator must be overloaded.
division to divide two types, the/ division operator must be overloaded.

addition to add two types, the + addition operator must be overloaded.

substraction to substract two types, the - substraction operator must be overloaded.

exponentiation to exponentiate two types, the * * exponentiation operator must be overloaded.

The de nition of an arithmetic operator takes two parameters. The rst parameter must be of the
type that occurs at the left of the operator, the second parameter must be of the type that is at the
right of the arithmetic operator. The result type must match the type that results after the arithmetic
operation.

To compile an expression as

var
R : real;
C Z : conplex;

begi n
C =Rz
end;
one needs a de nition of the multiplication operator as:

Operator * (r : real; z1 : conplex) z : conplex;

begi n
z.re :=zl.re * r;
z.im:=2zl.im?* r;
end;

104

CHAPTER 11. OPERATOR OVERLOADING

As can be seen, the rst operator isareal, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between area and a complex is de ned,

the compiler will not use that de nition when it encounters a complex and areal (in that order). Itis
necessary to de ne both operations.

So, given the above de nition of the multiplication, the compiler will not accept the following state-
ment:

var
R : real;
C Z : conplex;

begi n
C =Z*R
end;

since the types of Z and R don’t match the types in the operator de nition.

The reason for this behaviour is that it is possible that a multiplication is not always commutative.
e.g. the multiplication of a (n, m with a(m n) matrix will result in a (n, n) matrix, while the
mutiplication of a(m n) witha(n, m) matrixisa(m nm) matrix, which needn’t be the samein al
cases.

11.5 Comparision operator

The comparision operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. The result type of a comparision operator is always a boolean.

The comparision operators that can be overloaded are:

equal to (=) to determine if two variables are equal.

lessthan (<) to determineif one variable isless than another.

greater than (>) to determineif one variableis greater than another.

greater than or equal to (>=) to determine if one variable is greater than or equal to another.

lessthan or equal to (<=) to determineif one variableis greater than or equal to another.

There is no separate operator for unequal to (<>). To evaluate a statement that contans the unequal
to operator, the compiler uses the equal to operator (=), and negates the result.

As an example, the following opetrator allows to compare two complex numbers:
operator = (z1l, z2 : conplex) b : bool ean;
the above de nition allows comparisions of the following form:

Var
C1,C2 : Conplex;

begi n
If C1=C2 then
Witeln(’CL and C2 are equal ');
end;

105

CHAPTER 11. OPERATOR OVERLOADING

The comparision operator de nition needs 2 parameters, with the types that the operator is meant to
compare. Here also, the compiler doesn’t apply commutativity; if the two types are different, then it
necessary to de ne 2 comparision operators.

In the case of complex numbers, it is, for instance necessary to de ne 2 comparsions: one with the
complex type rst, and one with the real type rst.

Given the de nitions

oper at or
oper at or

(z1 : conplex;r : real) b : bool ean;
(r : real; z1 : conplex) b : bool ean;

the following two comparisions are possible:

Var
R S : Real;
C : Conpl ex;
begi n

If (CR) or (S=C) then
Witeln ("G);
end;

Note that the order of the real and complex typein the two comparisionsiis reversed.

106

Chapter 12

Programs, units, blocks

A Pascal program consists of modules called uni t s. A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

12.1 Programs

A pascal program consists of the program header, followed possibly by a’uses' clause, and a block.

[[
Programs

»— program — program header —; ﬁ block — . >
uses clause

»— program header — program — identi er

L (- program parameters —) J

»— program parameters — identi er list — ~—

»— uses clause — uses f{ identi er fT ;

The program header is provided for backwards compatibility, and is ignored by the compiler. The
uses clause serves to identify al units that are needed by the program. The system unit doesn’t have
to be in thislist, since it is always loaded by the compiler. The order in which the units appear is
signi cant, it determinesin which order they areinitialized. Unitsareinitialized in the same order as
they appear in the uses clause. Identi ers are searched in the opposite order, i.e. when the compiler
searches for an identi er, then it looks rst in the last unit in the uses clause, then the last but one,
and so on. Thisisimportant in case two units declare different types with the same identi er. When
the compiler looks for unit les, it adds the extension .ppu (.ppw for Win32 platforms) to the name
of the unit. On LINUX and in operating systems where lenames are case sensitive, when looking
for a unit, the unit nameis rst looked for in the original case, and when not found, converted to all
lowercase and searched for.

If aunit nameislonger than 8 characters, the compiler will rst ook for aunit name with thislength,
and then it will truncate the name to 8 characters and look for it again. For compatibility reasons,
thisis aso true on platforms that suport long le names.

107

CHAPTER 12. PROGRAMS, UNITS, BLOCKS

12.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for aunit is as follows:

[|
Units

»— unit — unit header — interface part — implementation part —
end - . — >

- initialization part — L J
nalization part

begin ff statemk

»— unit header — unit — unit identi er —; ~—

»— interface part — interface — -
L uses clause J ?onstant declaration partﬁ

type declaration part —
procedure headers part —

»— procedure headers part —- procedure header — ; — >
T»function header J LcaII modi ers —; J

»— implementation part —implementation fﬁ declaration part ——
uses clause

»— initialization part — initialization ff statement — >

»— nalization part — nalization ff statement — >

The interface part declares al identi ers that must be exported from the unit. This can be constant,
type or variableidenti ers, and also procedure or function identi er declarations. Declarationsinside
the implementation part are not accessible outside the unit. The implementation must contain a
function declaration for each function or procedure that is declared in the interface part. If afunction
is declared in the interface part, but no declaration of that function is present in the implementation
part, then the compiler will give an error.

When aprogram uses aunit (say unitA) and this units uses a second unit, say unitB, then the program
depends indirectly also on uni t B. This means that the compiler must have access to unitB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identi ers from a unit on which a program depends indirectly, are not accessible to the
program. To have accessto the identi ers of aunit, the unit must be in the uses clause of the program
or unit where the identi ers are needed.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. Thisis
allowed, on the condition that at least one of the references is in the implementation section of the
unit. Thisalso holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then thereis circular unit dependence, and the compiler will generate an error. As
and example : the following is not allowed:

108

CHAPTER 12. PROGRAMS, UNITS, BLOCKS

Unit UnitA;
interface

Uses UnitB;

i mpl enent ati on
end.

Unit UnitB
interface

Uses UnitA;

i mpl ement ation
end.

But thisis allowed :

Unit UnitA;

i nterface

Uses UnitB;

i mpl ement ati on
end.

Unit UnitB

i mpl enent ati on
Uses UnitA;
end.

Because UnitB uses UnitA only in it's implentation section. In general, it is a bad idea to have
circular unit dependencies, even if it isonly in implementation sections.

12.3 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types
variables and functions or procedures. Blocks can be nested in certain ways, i.e., a procedure or
function declaration can have blocksin themselves. A block looks like the following:

[
Blocks

»— block — declaration part — statement part — »—

»— declaration part — >
label declaration part

constant declaration part
— resourcestring declaration part —
type declaration part

variable declaration part
— threadvariable declaration part —
L procedure/function declaration part —

»— label declaration part — label ﬁ\be\lj ; »—

»— constant declaration part — const ZT constant declaration — J »—
typed constant declaration

109

CHAPTER 12. PROGRAMS, UNITS, BLOCKS

»— resourcestring declaration part — resourcestring 7 string constant declaration T

»— type declaration part — type 77 type declaration ‘ >

»— variable declaration part — var 77 variable declaration ‘ >

»— threadvariable declaration part — threadvar 77 variable declaration T—N

»— procedure/function declaration part procedure declaration >
function declaration —

constructor declaration —

destructor declaration —{

»— statement part — Compound statement >

Labels that can be used to identify statements in a block are declared in the label declaration part
of that block. Each label can only identify one statement. Constants that are to be used only in one
block should be declared in that block’s constant declaration part. Variables that are to be used only
in one block should be declared in that block’s constant declaration part. Types that are to be used
only in one block should be declared in that block’s constant declaration part. Lastly, functions and
procedures that will be used in that block can be declared in the procedure/function declaration part.
After the different declaration parts comesthe statement part. This contains any actionsthat the block
should execute. All identi ers declared before the statement part can be used in that statement part.

12.4 Scope

Identi ers are valid from the point of their declaration until the end of the block in which the dec-
laration occurred. The range where the identi er is known is the scope of the identi er. The exact
scope of an identi er depends on the way it was de ned.

12.4.1 Block scope

The scope of avariable declared in the declaration part of ablock, isvalid from the point of declara-
tion until the end of the block. If ablock contains a second block, in which theident er isredeclared,
then inside this block, the second declaration will be valid. Upon leaving the inner block, the rst
declaration isvalid again. Consider the following example:

Pr ogr am Deno;

Var X : Real;

{ Xis real variable }

Procedure NewDecl aration

Var X : Integer; { Redeclare X as integer}

begi n

[l X :=1.234; {would give an error when trying to conpil e}
X := 10; { Correct assignment}

110

CHAPTER 12. PROGRAMS, UNITS, BLOCKS

end;
{ Fromhere on, X is Real again}
begi n
X 1= 2.468;
end.

In this example, inside the procedure, X denotes an integer variable. It hasit’s own storage space,
independent of the variable X outside the procedure.

12.4.2 Record scope
The eldidenti ersinside arecord de nition are valid in the following places:

1. tothe end of the record de nition.
2. eld designators of avariable of the given record type.

3. identi ersinsidea W t h statement that operates on a variable of the given record type.

12.4.3 Class scope

A component identi er isvalid in the following places:

1. From the point of declaration to the end of the class de nition.
2. Inal descendent types of this class, unlessit isin the private part of the class declaration.
3. Inall method declaration blocks of this class and descendent classes.

4. In awith statement that operators on a variable of the given class's de nition.

Note that method designators are also considered identi ers.

12.4.4 Unit scope

All identi ers in the interface part of a unit are valid from the point of declaration, until the end
of the unit. Furthermore, the identi ers are known in programs or units that have the unit in their
uses clause. Identi ers from indirectly dependent units are not available. Identi ers declared in the
implementation part of aunit are valid from the point of declaration to the end of the unit. The system
unit is automatically used in all units and programs. It's identi ers are therefore always known, in
each pascal program, library or unit. The rules of unit scope imply that an identi er of a unit can
be rede ned. To have access to an identi er of another unit that was redeclared in the current unit,
precede it with that other units name, as in the following example:

unit unitA,
i nterface
Type

M/ Type = Real;
i mpl ement ati on
end.
Pr ogram pr og;
Uses UnitA;

{ Redecl aration of MyType}

111

CHAPTER 12. PROGRAMS, UNITS, BLOCKS

Type MyType = I|nteger;

Var A : Mtype; { WII be Integer }
B: UnitA MType { WII be real }

begi n

end.

Thisis especialy useful when redeclaring the system unit’sidenti ers.

125 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 and 0s/2) trough the use of
theLi br ary keyword.

A Library isjust like aunit or aprogram:

[
Libraries

»— library — library header — ; 71—ﬂT block — . -
uses clause

»— library header — library — identi er -

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use this library.

In order to make functions or procedures available from the library, they must be exported in an
export clause:

[
Exports clause

»— exports clause — exports — exports list — ; — >

=»— exports list T exports entry -

»— exports entry — identi er

L index — integer constant J L name — string constant J

Under Win32, an index clause can be added to an exports entry. an index entry must be a positive
number larger or equal than 1.

Optionally, an exports entry can have a name speci er. If present, the name speci er gives the exact
name (case sensitive) of the function in the library.

If neither of these constructsis present, the functions or procedures are exported with the exact names
as speci ed in the exports clause.

112

Remark:

Chapter 13

Exceptions

Exceptions provide a convenient way to program error and error-recovery mechanisms, and are
closely related to classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. Thisisusually done to signal an error condition.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serveto clean up memory or close lesin case an exception
occurs. The compiler generates many implicit Try ... Final | y blocks around proce-
dure, to force memory consistence.

13.1 Theraise statement

Ther ai se statement is as follows:

[
Raise statement

= raise statement — —~
L exception instance ‘

L at — address expression J

This statement will raise an exception. If it is speci ed, the exception instance must be an initialized
instance of a class, which is the raise type. The address exception is optional. If itis not speci ed,
the compiler will provide the address by itself. If the exception instance is omitted, then the current
exception isre-raised. This construct can only be used in an exception handling block (see further).

Control never returns after an exception block. Thecontrol istransferredtothe rst try. .. finally
ortry...except statement that is encountered when unwinding the stack. If no such statement
isfound, the Free Pascal Run-Time Library will generate arun-time error 217 (see also section 13.5,
page 116).

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of type EDi vExcept i on

113

CHAPTER 13. EXCEPTIONS

Type EDi vException = C ass(Exception);
Function DoDiv (X, Y : Longint) : Integer;
begi n
I f Y=0 then
Rai se EDi vException.Create (' D vision by Zero would occur’);
Result := X D v Y,
end;

The classExcept i on isdenedinthe Sysutils unit of thertl. (section 13.5, page 116)

13.2 Thetry...except statement

Atry...except exception handling block is of the following form :

I
Try..except statement
=»— try statement — try — statement list — except — exceptionhandlers —end —— <

»— statement list T statement »—

»— exceptionhandlers — .
T exception handler W L

else — statement list J
statement list —

= exception handler — on 71—f class type identi er — do — statement —«
identier —: —

If no exception is raised during the execution of the st at ement | i st , then all statementsin the
list will be executed sequentially, and the except block will be skipped, transferring program ow to
the statement after the nal end.

If an exception occurs during the execution of the st at ement | i st , the program ow will be
transferred to the except block. Statementsin the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the corresponding Do will be executed. The rst matching
typeisused. After the Do block was executed, the program continues after the End statement.

The identi er in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block foillowing the Do keyword.

If none of the On handlers matches the exception object type, then the statement list after el se is
executed. If no such list is found, then the exception is automatically re-raised. This process allows
tonesttry...except blocks.

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program ow continues. The exception is destroyed through a
call to the object’s Dest r oy destructor.

As an example, given the previous declaration of the DoDi v function, consider the following

114

CHAPTER 13. EXCEPTIONS

Try

Z :=DoDiv (XY);
Except

On EDi vException do Z : = 0;
end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program ow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program ow continues past the last end statement. To
allow error recovery, the Try ... Finally block issupported. A Try. .. Fi nal |y block
ensures that the statements following the Fi nal | y keyword are guaranteed to be executed, even if
an exception occurs.

13.3 Thetry... nally statement

A Try. . Fi nal | y statement has the following form;

[
Try... nally statement

»— trystatement — try — statement list — nally — nally statements —end —— <

»— nally statements — statementlist >

If no exception occursinsidethest at enment Li st , thentheprogramrunsasiftheTry, Fi nal | y
and End keywords were not present.

If, however, an exception occurs, the program ow is immediatly transferred from the point where
the excepion was raised to the rst statement of the Fi nal | y st at ement s.

All statements after the nally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the rst statement
of theFi nal | y Statenents are skipped.

As an example consider the following routine:

Procedure Doit (Nanme : string);
Var F : Text;
begi n
Try
Assi gn (F, Nane);
Rewite (nane);
File handling ...

Finally
Cl ose(F);
end;

If during the execution of the le handling an execption occurs, then program ow will continue at

the cl ose(F) statement, skipping any le operations that might follow between the place where
the exception wasraised, and the Cl ose statement. If no exception occurred, al e operations will
be executed, and the le will be closed at the end.

115

CHAPTER 13. EXCEPTIONS

13.4 Exception handling nesting

Itispossibletonest Try. . . Except blockswithTry. .. Fi nal | y blocks. Program ow will be
doneaccordingtoal i f o (lastin, rstout) principle: The code of thelast encountered Try. . . Except
or Try. .. Final Iy block will be executed rst. If the exception is not caught, or it was a nally
statement, program ow will be transferred to the last-but-one block, ad in nitum.

If an exception occurs, and there is no exception handler present, then a runerror 217 will be gen-
erated. When using the sysutils unit, a default handler is installed which will show the exception
object message, and the address where the exception occurred, after which the program will exit with
aHal t instruction.

13.5 Exception classes

The sysutils unit contains a great deal of exception handling. It de nes the following exception
types:

Exception = cl ass(TObj ect)

private
fmessage : string;
f hel pcontext : |ongint;

public
constructor create(const nsg : string);
constructor createres(indent : |ongint);
property hel pcontext : longint read fhel pcontext wite fhel pcontext;
property nmessage : string read frmessage wite fnessage;

end;

Except Cl ass = Cl ass of Exception;
{ mathematical exceptions }
ElntError = class(Exception);

EDi vByZero = class(ElntError);
ERangeError = class(EIntError);
El nt Overflow = class(EIntError);
EMat hError = cl ass(Exception);

The sysutils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with a exit code of 217. If the
exception object is not adescendent object of the Except i on object, then the class nameis printed
instead of the exception message.

It is recommended to use the Except i on object or a descendant class for al r ai se statements,
since then the message eld of the exception object can be used.

116

Chapter 14

Using assembler

Free Pascal supports the use of assembler in code, but not inline assembler macros. To have more
information on the processor speci ¢ assembler syntax and its limitations, see the Programmers
guide.

14.1 Assembler statements

The following is an example of assembler inclusion in pascal code.

St :':1t ement s;
Asm
the asm code here
end;
St ;elt enents;
The assembler instructions between the Asmand end keywords will be inserted in the assembler

generated by the compiler. Conditionals can be used ib assembler, the compiler will recogniseit, and
treat it as any other conditionals.

14.2 Assembler proceduresand functions

Assembler procedures and functions are declared using the Assenbl er directive. This permitsthe
code generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of oating point values, these depend on the target processor

and emulation options.

117

file:../prog/prog.html
file:../prog/prog.html

	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Delphi reserved words
	Free Pascal reserved words
	Modifiers

	Identifiers
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Ordinal types
	Integers
	Boolean types
	Enumeration types
	Subrange types

	Real types

	Character types
	Char
	Strings
	Short strings
	Ansistrings
	WideStrings
	Constant strings
	PChar - Null terminated strings

	Structured Types
	Arrays
	Static arrays
	Dynamic arrays

	Record types
	Set types
	File types

	Pointers
	Forward type declarations
	Procedural types
	Variant types
	Definition
	Variants in assignments and expressions
	Variants and interfaces

	Variables
	Definition
	Declaration
	Scope
	Thread Variables
	Properties

	Objects
	Declaration
	Fields
	Constructors and destructors
	Methods
	Method invocation
	Static methods
	Virtual methods
	Abstract methods

	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	invocation
	Virtual methods
	Class methods
	Message methods

	Properties

	Interfaces
	Definition
	Interface identification: A GUID
	Interfaces and COM
	CORBA and other Interfaces

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Set operators
	Relational operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Parameter lists
	Value parameters
	Variable parameters
	Out parameters
	Constant parameters
	Open array parameters
	Array of const

	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	alias
	cdecl
	export
	inline
	interrupt
	pascal
	popstack
	public
	register
	saveregisters
	safecall
	softfloat
	stdcall
	varargs

	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparision operator

	Programs, units, blocks
	Programs
	Units
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

