Free Pascal
Programmers manual

Programmers manual for Free Pascal, version 2.0.0
Document version 2.0
May 2005

Micha®l Van Canneyt

Contents

0.1 Aboutthisdocument 12
1 Compiler directives 13
1.1 Loca directiveso 13
111 AorALIGN:AlignData oo v 13
112 $ASMMODE : Assembler mode (Intel 80x86only) 13
1.1.3 $Bor $BOOLEVAL : Complete boolean evaluation 14

114 $Cor $ASSERTI ONS: Assertionsupport. oo v v v 14
115 $CHECKPO NTER: Check pointervalues. 14
116 $DEFINE:Deneasymbol 15
1.1.7 S$ELSE: Switch conditional compilation 15
11.8 $ELSEC: Switch conditional compilation. 15
119 $ENDC: End conditional compilation 15
1.1.10 $ENDI F: End conditional compilation 15
1111 SERROR: GenerateemrormesSage . .« « « v v v v v v v e e e e 16
1112 $F:Farornearfunctions 16
11.13 $FATAL : Generatefatal errormessage o o v oo 17
1.1.14 $FPUTYPE: Select coprocessortype o v v v v v oo v n 17
1.1.15 $GOTO: Support GotoandLabel 17
1.1.16 $Hor $SLONGSTRI NGS: Use AnsiStrings« o v o oo oo o u 18
1117 $HI NT: Generatehintmessage v v 18
1.1.18 $HINTS:Emithints e 18
1.1.19 $I F: Start conditional compilation 18
1.1.20 $I FC: Start conditional compilation 18
1.1.21 $I FDEF Nane : Start conditional compilation 18
1.1.22 $| FNDEF : Start conditional compilation 18
1.1.23 $I FOPT : Start conditional compilation 19
1.1.24 $I MPLI Cl TEXCEPTI ONS: Do not generate nalizationcode 19
1125 $I NFO: Generateinfomessage o v v v it i e 19
1.1.26 $I NLI NE: Allowinlinecode. 19
1.1.27 $I NTERFACES: Specify Interfacetype. 19

CONTENTS

12

1.1.28 $I or $I OCHECKS : Input/Output checking. 20
1.1.29 $l or$I NCLUDE:Include le 20
1.1.30 $I or $I NCLUDE: Includecompilerinfo 21
1.1.31 $I 386_XXX: Specify assembler format (Intel 80x86only) 21
1.1.32 LorLINK: Linkobject le 22
1.1.33 $LINKLIB:Linktoalibrary 22
1.1.34 $Mor $TYPEI NFO: Generatetypeinfo. 23
1.1.35 $MACRO: Allow useof Mmacros. v oo v i i e 23
1.1.36 $MAXFPUREG STERS : Maximum number of FPU registersfor variables . 23
1.1.37 $MESSACE: Generateinfomessage. v v v oo e 23
1.1.38 $MWX: Intel MMX support (Intel 80x86only) 24
1.1.39 SNOTE: GeneratenoteMESSAgE + « « « « v v v v v v e e e e et e e e e e 24
1140 $NOTES:Emitnotes. o v i e e e e e e 24
1.1.41 $OUTPUT_FORMAT : Specify theoutput format 25
1.1.42 $Por $OPENSTRI NGS: Useopenstrings v v v v v v v v o 25
1.1.43 $PACKENUM: Minimum enumerationtypesize. 25
1.1.44 $PACKRECORDS : Alignment of recordelements. 26
1145 $QPOVERFLONCHECKS: Overow checking 26
1.1.46 $Ror SRANGECHECKS : Rangechecking 26
1.1.47 $SATURATI ON: Saturation operations (Intel 80x86only) 27
1148 $SETC:Deneandassignavaluetoasymbol 27
1149 $STATIC: Allowuseof Statickeyword. 27
1150 $STOP: Generatefatal errormessage v v v v v v v oo 27
1.1.51 $T or $TYPEDADDRESS : Typed addressoperator (@) 28
1152 $UNDEF:Undeneasymbol 28
1.1.53 $Vor $VARSTRI NGCHECKS : Var-string checking 28
1154 $WAI T: Waitforenterkeypress 28
1.1.55 $WARNI NG: Generate warningmesSsage . . .« « v v v v v v v v v v o 28
1156 $WARNI NGS: Emitwarnings oo v vt v i oo e 28
1.1.57 $Xor SEXTENDEDSYNTAX : Extendedsyntax 29
Global directives 29
121 $APPI D: Specify applicationID. 29
122 $APPI D: Specify applicationname. 29
123 $APPTYPE: Specify typeof application. 29
124 $CALLI NG: Default callingconvention. 30
125 $COPYRI GHT specify copyrightinfo 31
1.2.6 $Dor $DEBUG NFO: Debuggingsymbols 31
127 $DESCRI PTI ON: Application description 31
128 $E:Emulationof COProcessor v v i i 31

Intel 8OX86VErsion 31

CONTENTS

MotorolaB80X0 version 31

129 $G:Generate80286code 32
1210 $I NCLUDEPATH: Specify includepath. 32
1.2.11 $L or $LOCALSYMBOLS: Local symbol information 32
1.2.12 $LI BRARYPATH: Specify library path. 32
1213 $Mor $MEMORY : MEMOry SIZES v v v v e e e e e e 33
1.2.14 $MODE : Set compiler compatibilitymode 33
1215 $N:NUMENCProCeSSING . .« v v v v v e e e e e e 33
1216 $0O:Overlay codegeneration 33
1217 $OBIJECTPATH: Specify objectpath. 33
1218 $PROFILE:Proling i, 34
1219 $S:Stackchecking 34
1220 $SMARTLI NK: Usesmartlinking 34
1.2.21 $THREADNAME: Set thread nameinNetware. 34
1.2.22 $THREADI NG: Allowuseofthreads. 35
1.2.23 $UNI TPATH: Specify unitpath. 35
1224 $VERSI ON: Specify DLLversion. 35
1.2.25 $Wor $STACKFRAMES : Generate stackframes 35
1.2.26 $Y or SREFERENCEI NFO: Insert Browser information 36

2 Using conditionals, messages and macros 37
21 Conditionals. e 37
211 Predenedsymbols 38

2.2 MaCIOS o 38
2.3 Compiletimevariables 39
24 CompiletimeexpresSions. . . v v v v v v e e e e 40
241 Denition e 40
242 USAE . . . v o 41

25 MESSA0ES 45
3 Using Assembly language 47
3.1 Intel 80x86 Inlineassembler 47
L1 Intelsyntax e 47
312 AT&TSYNAX . . v v v o e e e e 49

3.2 Motorola680x0 Inlineassembler 51
33 Signalingchangedregisters 52
4 Generated code 53
A1 UnitS. . . o e 53
4.2 Programs e e e e e e 54

CONTENTS

5

Intel MM X support

51 Whatisitabout?

5.2 Saturationsupport e

5.3 Redtrictionsof MMX supporto

5.4 Supported MMX operations

55 OptimizingMMX support
Codeissues

6.1 RegisterConventions

6.1.1 accumulatorregister

6.1.2 accumulator 64-bitregister

6.1.3 oatresultregister

6.14 sdfregister

6.1.5 framepointerregister.

6.1.6 stack pointerregister

6.1.7 scrachregisters.

6.1.8 Processor mappingof registers

Intel 80x86version

Motorola680x0version

6.2 Namemangling

6.2.1 Mangled namesfordatablocks

6.2.2 Mangled namesforcodeblocks

6.2.3 Modifyingthemanglednames

6.3 Cdlingmechanism

6.4 Nested procedureand functions.

6.5 Constructor and Destructorcalls

6.5.1 objects

652 classes

6.6 Entryandexitcode,

6.6.1 Intel 80x86 standard routine prologue/ epilogue

6.6.2 Motorola 680x0 standard routine prologue / epilogue

6.7 Parameter passingo e
6.7.1 Parameteraignment L L.
6.8 Processor limitations

Linking issues

7.1 Usingexternal codeandvariables
7.1.1 Declaring external functionsor procedures
7.1.2 Declaring external variables,
7.1.3 Declaring thecalling conventionmodier
7.1.4 Declaringtheexterna objectcode

CONTENTS

Linkingtoanobject le 71
Linkingtoalibrary 72

7.2 Makinglibraries. 73
7.21 Exportingfunctions. 73
722 Exportingvariables 74
723 Compilinglibraries 74
724 Unitsearchingstrategy i i i e e e e 75

7.3 Usingsmartlinking 75
Memory issues 77
81 Thememorymodel.. 77
8.2 Dataformats. 78
821 integertypes 78
822 chartypes. 78
823 booleantypes 78
824 enumerationtypes 78
825 oaingpointtypes 79
SINgle . . . 79

double. 80

extended 80

COMP . o o e e e e e 80

reAl . . 80

826 poiNtertypes e e e e e 80
827 SiNgtypeS 81
ansistringtypes 81

ShOrtStHiNg tYpeS . . v v v o o o e e 81
Widestringtypes e 8l

828 SEtYPES. 8l
829 armaytypes e 8l
8210 recordtypes. o e 82
8.211 objecttypes e 82
8212 classtypes 82
8213 letypes 83
8.2.14 procedural typeS e e 84

8.3 Datadignment 84
8.3.1 Typedconstantsand variablealignment 84
8.3.2 Structuredtypesalignment 85

84 Theheap. 85
84.1 Heapadlocationstrategy 85
842 Theheapgrows. 86

CONTENTS

8.4.3 Debuggingtheheap 86

8.4.4 Writing your own memory manager e 87

8,5 Using bos memory undertheGo32extender 89

9 Resourcestrings 91
9.1 INtroduction e 91
9.2 Theresourcestring le 91
9.3 Updatingthestringtables 93
94 GNUGQEttext 94
95 Caveal 95

10 Thread programming 96
10.1 Introduction o 96
10.2 Programmingthreads e 96
10.3 Critical sections e 98
10.4 TheThread Manager o o i e e 100

11 Optimizations 102
11.1 NONProCESSOr SPECI €« v v o v v e e e e e e e e e e e e e e 102
11.1.1 Congtantfolding 102

1112 Constant merging« o v v i e e e 102

11.1.3 Shortcutevaluation 102

11.14 Congtantsetinlining 102

1115 Smalsets 103

11.16 Rangechecking. 103

1117 Andinsteadof modulo 103

11.1.8 Shiftsinstead of multiply ordivide 103

11.1.9 Automaticalignment 103

112 10Smart linking o 103

11112 1InlineroutineS e e e e 103
11.1.12Stack frameomission 103
11.1.13Registervariables 104

122 ProCeSSOr SPECI €« v v v v e e e e e e e e e 104
1121 Intel 80X86SPECI C . .« v v v o 104

11.2.2 MotorolaB80X0SPECI C . . . o v v v o e e e 106

11.3 Optimizationswitches e 106
114 Tipstogetfastercode e 107
115 Tipstogetsmallercode 107

12 Programming shared libraries 108
121 Introduction L L L e 108

CONTENTS

13

12.2 Creatingalibrary
12.3 Usingalibraryinapascal program oo
12.4 Usingapascal library fromaCprogram e
125 SomeWIindowSiSSUES v v v v o o e e e

Using Windows resour ces

131 Theresourcedirective$R
13.2 Creating reSOUMCES . . . o v v v e e e e e e e e
133 Usingstringtables.
134 Insertingversioninformation e
135 Insertingan applicationicon
13.6 Usingapascal PreproCeSSOr . . . v v v v v v v e e e e e e e

Anatomy of aunit le

AL BaSICS . . . v i
A2 readingppules
A3 TheHeader e
A4 TheseCtions e
A5 Cregtingppules

Compiler and RTL sourcetreestructure
B.1 Thecompilersourcetree
B.2 TheRTL sourcetree e e

Compiler limits

Compiler modes

D.1 FPCmMOde o
D.2 TPmMOde. o
D.3 Delphimode. e e
D4 GPCmode. e
D5 OBIFPCmode
D.6 MACMOdE

Using fpcmake

E.1l Introduction e

E.2 Functionality e e

E3 Usage e

E.4 Formatof theconguration le
E41l clean e
E.42 compiler e
E43 Default e

113
113
113
114
114
115
115

117
117
117
118
119
120

123
123
123

125

126
126
126
127
127
127
128

CONTENTS

E44 Dist e 133
E45 Instal e 134
E46 Package 134
EA7 Prerules e 134
E48 ReqUIres 134
E49 RUES e 135
E410 Target o o e 135

E.5 Programsneeded tousethegenerated makele 136
E.6 Variablesthat affect thegeneratedmakele 136
E.6.1 Directoryvariables 137
E.6.2 Compiler command-linevariables 137

E.7 Variablessetbyfpcmake 137
E.71 Directoryvariables 138
E.72 Targetvariables. 139
E.7.3 Compiler command-linevariables 140
E.74 Programnames i e e e e e 140
E75 Fileextensions 141
E76 Target les 141

E.8 Rulesandtargetscreatedbyfpcmake 141
E.B1 Patternrules 141
EB2 Buildrules 142
E.83 Cleaningrules 142
E.8.4 archivingrules e 142
E.85 Instalationrules 142
E.8.6 Informativerules 143

F Compiling the compiler 144
F1 Introduction e e 144
F2 Beforestarting 144
F3 Compilingusingmake e 145
F4 Compilingbyhand 146
F4.1 CompilingtheRTL 146

F4.2 Compilingthecompiler 147

G Compiler de nesduring compilation 149
H Stack con guration 151
H.1 DOS e 151
H.2 LinUX . . . e e e e e 151
H3 Netbsd 151
H.4 Freebsd e 151

CONTENTS

HS5 BeOS 151
H6 WINdoWS e e 151
H7 OS2 . . . 152
H8 Amiga 152
HO Atari 152
| Operating system speci ¢ behavior 153

List of Tables

11

21

6.1
6.2
6.3
6.4
6.5
6.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

121

Al
A.2
A3
A4
A5

F1

Gl
G2

Formats generated by thex86 compiler 25
Predenedmacros e 39
Intel 80x86 Registertable 59
Motorola680x0 Registertable 59
Calling mechanismsinFreePascal 64
Stack frame when calling a nested procedure (32-bit processors) 64
Stack frame when calling aprocedure (32-bitmodel) 66
Maximum limitsfor processors 67
Enumeration storagefortpmodeo oo 79
Processor mappingof real type 79
AnsiString memory structure (32-bitmodel) oL 81
Object memory layout (32-bitmodel), 82
Object Virtual Method Table memory layout (32-bitmodel) 82
Classmemory layout (32-bitmodel) 83
Class Virtual Method Table memory layout (32-bitmodel) 83
Dataaignment e 85
ReturnNillfGrowHeapFailsvalue 86
Sharedlibrary support. 108
PPUHeader 118
PPUCPU Fieldvalues e 118
PPU Header Flagvalues 119
chunk dataformat 119
Possible PPU ENtry types o o e e e e e e e 120
Possiblede neswhen compilingFPC o 148
Possible de neswhen compilingusing FPC L. 149
Possible CPU de neswhen compilingusingFPC 150

10

LIST OF TABLES

G.3 Possible de neswhen compilingusingtargetOS 150

.1 Operating system speci cbehavior L. 153

11

LIST OF TABLES

0.1 About thisdocument

Thisisthe programmer’s manual for Free Pascal.

It describes some of the peculiarities of the Free Pascal compiler, and provides a glimpse of how
the compiler generates its code, and how you can change the generated code. It will not, however,
provide a detailed account of the inner workings of the compiler, nor will it describe how to use the
compiler (described in the Users guide). It also will not describe the inner workings of the Run-Time
Library (RTL). The best way to learn about the way the RTL is implemented is from the sources
themselves.

The things described here are useful when things need to be done that require greater exibility than
the standard Pascal |anguage constructs (described in the Reference guide).

Since the compiler is continuously under devel opment, this document may get out of date. Wherever
possible, the information in this manual will be updated. If you nd something which isn’t correct,
or you think something is missing, feel free to contact met.

1at M chael . VanCanneyt @i sa. be

12

file:../user/user.html
file:../ref/ref.html

Chapter 1

Compiler directives

Free Pascal supports compiler directives in the source le. They are not the same as Turbo Pascal
directives, although some are supported for compatibility. There is a distinction between local and
global directives; local directives take effect from the moment they are encountered, global directives
have an effect on all of the compiled code.

Many switches have along form also. If they do, then the name of the long form is given aso. For
long switches, the + or - character to switch the option on or off, may be replaced by ON or OFF
keywords.

Thus { $! +} isequivalent to {$| OCHECKS ON} or { $| OCHECKS +} and { $C-} is equivalent
to { SASSERTI ONS OFF} or { $ASSERTI ONS -}

The long forms of the switches are the same as their Delphi counterparts.

1.1 Local directives

Local directives can occur more than once in aunit or program, If they have acommand-line counter-
part, the command-line argument isrestored as the default for each compiled le. Thelocal directives
in uence the compiler’s behaviour from the moment they’re encountered until the moment another
switch annihilates their behaviour, or the end of the current unit or program is reached.

1.1.1 $Aor $ALI GN: Align Data

The { $ALI GNdirective can be used to select the data alignment strategy of the compiler for the Mac
OS. Only valid in MACPAS mode, it can have the following values:

MAC68K
POWER
RESET

1.1.2 $ASMMODE : Assembler mode (Intel 80x86 only)

The { SASMMODE XXX} directive informs the compiler what kind of assembler it can expect in an
asmblock. The XXX should be replaced by one of the following:

att Indicates that asmblocks contain AT& T syntax assembler.

13

CHAPTER 1. COMPILER DIRECTIVES

intel Indicatesthat asmblocks contain Intel syntax assembler.

direct Tellsthe compiler that asm blocks should be copied directly to the assembler le.

These switches arelocal, and retain their value to the end of the unit that is compiled, unlessthey are
replaced by another directive of the same type. The command-line switch that corresponds to this
switchis- R

The default assembler reader isthe AT& T reader.

1.1.3 $Bor $BOOLEVAL : Complete boolean evaluation

This switch is understood by the Free Pascal compiler, but is ignored. The compiler aways uses
shortcut evaluation, i.e. the evaluation of a boolean expression is stopped once the result of the total
exression is known with certainty.

So, in the following example, the function Bof u, which has a boolean result, will never get called.

If Fal se and Bofu then

This has as a consequence that any additional actions that are done by Bof u are not executed.

1.1.4 $Cor $SASSERTI ONS: Assertion support

The { SASSERTI ONS} switch determines if assert statements are compiled into the binary or not.
If the switch is on, the statement

Assert (Bool eanExpr essi on, Assert Message) ;

Will be compiled in the binary. If te Bool eanExpr essi on evaluates to Fal se, the RTL will
check if the Assert Error Proc is set. If it is set, it will be caled with as parameters the
Assert Message message, the name of the le, the LineNumber and the address. If it is not
set, aruntime error 227 is generated.

The Assert Error Proc isdened as

Type

TAssert Error Proc=procedur e(const mnsg, f nane: string;|ineno, erroraddr:|ongint);
Var

AssertErrorProc = TAssertErrorProc;

This can be used mainly for debugging purposes. The system unit sets the Assert Er r or Proc
to a handler that displays a message on st derr and simply exits. The sysutils unit catches the
run-time error 227 and raises an EAsser t i onFai | ed exception.

1.1.5 $CHECKPO NTER: Check pointer values

The { $CHECKPO NTER} directive turns heap pointer checking on (value ON) or off (value OFF).
When heap pointer checking is on and the code is compiled with the - gh (heaptrace) option on, then
a check isinserted when dereferencing a pointer. The check will verify that the pointer contains a
valid value, i.e. pointsto alocation that is reachable by the program: the stack or alocation in the
heap. If not, arun-time error 216 or 204 is raised.

If the code is compiled without - gl switch, then this directive has no effect. Note that this consider-
ably slows down the code.

14

CHAPTER 1. COMPILER DIRECTIVES

1.1.6 $DEFI NE: De ne a symbol
The directive

{ $DEFI NE nane}

de nesthe symbol nane. This symbol remains de ned until the end of the current module (i.e. unit
or program), or until a$UNDEF nane directive is encountered.

If name isalready de ned, this has no effect. Name is case insensitive.

The symbols that are de ned in a unit, are not saved in the unit le, so they are also not exported
from a unit.

1.1.7 $ELSE: Switch conditional compilation
The { $ELSE} switches between compiling and ignoring the source text delimited by the preceding

{8l Fxxx} and following { SENDI F} . Any text after the ELSE keyword but before the brace is
ignored:

{$ELSE sone ignored text}

isthesame as

{ $ELSE}

Thisisuseful for indication what switch is meant.

1.1.8 S$ELSEC: Switch conditional compilation

In MACPAS mode, this directive can be used as an alternative to the $EL SE directive. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.9 $ENDC: End conditional compilation

In MACPAS mode, this directive can be used as an alternative to the $ENDI F directive. It is sup-
ported for compatibility with existing Mac OS pascal compilers.

1.1.10 $ENDI F: End conditional compilation

The{ $ENDI F} directive endsthe conditional compilation initiated by thelast { $| Fxxx} directive.
Any text after the ENDI F keyword but before the closing brace is ignored:

{$ENDI F sone ignored text}
isthe same as
{ SENDI F}

Thisisuseful for indication what switch is meant to be ended.

15

CHAPTER 1. COMPILER DIRECTIVES

1.1.11 $ERROR: Generate error message

The following code
{$ERROR This code is erroneous !}

will display an error message when the compiler encounters it, and increase the error count of the
compiler. The compiler will continue to compile, but no code will be emitted.

1.1.12 $F: Far or near functions

This directive is recognized for compatibility with Turbo Pascal. Under the 32-hit and 64-bit pro-
gramming models, the concept of near and far calls have no meaning, hence the directive is ignored.
A warning is printed to the screen, as areminder.

As an example, the following piece of code:
{$F+}
Procedure Test Proc;

begi n
Witeln ("Hello From TestProc’);
end;

begi n
t est Proc
end.

Generates the following compiler output:

mal pertuus: >pp -vw testf
Compi | er: ppc386
Units are searched in: /hone/mchael;/usr/bin/;/usr/lib/ppc/0.9.1/1inuxunits
Target OS:. Linux
Conmpi ling testf.pp
testf.pp(l) Warning: illegal conpiler switch
7739 kB free
Cal ling assenbler...
Assenbl ed. ..
Calling linker...
12 lines conpil ed,
1. 00000000000000E+0000

One can see that the verbosity level was set to display warnings.

When declaring afunction asFar (thishasthe same effect assetting it between { $F+} . . . { $F-}
directives), the compiler aso generates awarning:

testf.pp(3) Warning: FAR ignored
The same story istrue for procedures declared as Near . The warning displayed in that caseis:

testf.pp(3) Warning: NEAR ignored

16

CHAPTER 1. COMPILER DIRECTIVES

1.1.13 $FATAL : Generate fatal error message
The following code

{$FATAL This code is erroneous !}

will display an error message when the compiler encountersit, and the compiler will immediatly stop
the compilation process.

Thisismainly useful inc conjunction wih { $1 FDEF} or { $| FOPT} statements.

1.1.14 3$FPUTYPE : Select coprocessor type
This directive selects the type of coprocessor used to do oating point calculations. The directive

must be followed by the type of oating point unit. The allowed values depend on the target CPU:
all SOFT: FPC emulates the coprocessor (not yet implemented).

i386 X87, SSE, SSE2: code compiled with SSE uses the sse to do calculations involving a oat of
type Si ngl e. This code runs only on Pentium 111 and above, or AthlonXP and above. Code
compiled with SSE2 uses the sse unit to do calculations with the single and double data type.
This code runs only on PentiumlV and above or Athlon64 and above

x86-64 SSE64
powerpc STANDARD
arm LI BCCC, FPA, FPA10, FPA11,VFP.

This directive corresponds to the - Cf command-line option.

1.1.15 $GOTO: Support Got 0 and Label

If { $GOTO ON} is speci ed, the compiler will support Got o statements and Label declarations.
By default, $GOTO OFF is assumed. This directive corresponds to the - Sg command-line option.

As an example, the following code can be compiled:
{$GOTO O\}
| abel Theend;

begi n
I f ParanmCount =0 then
GoTo TheEnd;
Witeln (' You specified conmand-|ine options’);
TheEnd:
end.

Remark: When compiling assembler code using the inline assembl er readers, any labels used in the assembl er
code must be declared, and the { $GOTO ON} directive should be used.

17

CHAPTER 1. COMPILER DIRECTIVES

1.1.16 $Hor $LONGSTRI NGS : Use AnsiStrings

If { SLONGSTRI NGS ON} is speci ed, the keyword St ri ng (no length speci er) will be treated
as Ansi St ri ng, and the compiler will treat the corresponding variable as an ansistring, and will
generate corresponding code.

By default, the use of ansistrings is off, corresponding to { $H}. The system unit is compiled
without ansistrings, all its functions accept shortstring arguments. The sameistruefor all RTL units,
except the sysutils unit, which is compiled with ansistrings.

1.1.17 $HI NT : Generate hint message

If the generation of hintsisturned on, through the - vh command-line option or the { $HI NTS ON}
directive, then

{$H nt This code should be optim zed }

will display a hint message when the compiler encountersit.
By default, no hints are generated.

1.1.18 $HI NTS: Emit hints

{$H NTS ON} switches the generation of hintson. { $HI NTS OFF} switches the generation of
hints off. Contrary to the command-line option - vh thisisalocal switch, thisis useful for checking
parts of the code.

1.1.19 $I F: Start conditional compilation

Thedirective{ $| F expr} will continue the compilation if the boolean expression expr evaluates
tot rue. If the compilation evaluates to false, then the source is skipped to the rst { $ELSE} or
{ $ENDI F} directive.

The compiler must be able to evaluate the expression at parse time. This means that variables or
constants that are de ned in the source cannot be used. Macros and symbols may be used, however.

More information on this can be found in the section about conditionals.

1.1.20 $I FC: Start conditional compilation

In MACPAS mode, this directive can be used as an dternative to the $1 F directive. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.21 $I FDEF Nane : Start conditional compilation

If the symbol Nane is not de ned then the { $| FDEF nane} will skip the compilation of the text
that follows it to the rst { $ELSE} or { $ENDI F} directive. If Nane is de ned, then compilation
continues asif the directive wasn't there.

1.1.22 3| FNDEF : Start conditional compilation

If the symbol Nane is de ned then the { $| FNDEF narne} will skip the compilation of the text
that follows it to the rst { SELSE} or { $ENDI F} directive. If it is not de ned, then compilation
continues as if the directive wasn't there.

18

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.23 $I FOPT : Start conditional compilation

The{ $| FOPT swi t ch} will compile the text that followsit if the switch swi t ch iscurrently in
the speci ed state. If itisn't in the speci ed state, then compilation continues after the corresponding
{ $ELSE} or { $ENDI F} directive.

Asan example:

{$] FOPT Mt}
Witeln (' Conpiled with type information’);
{ $ENDI F}

Will compile the writeln statement if generation of type information is on.

The { $| FOPT} directive accepts only short options, i.e. { $| FOPT TYPEI NFO} will not be ac-
cepted.

1.1.24 $I MPLI Cl TEXCEPTI ONS: Do not generate nalization code

The compiler generatesanimplicitt ry...f i nal | y frame around each procedure that needs initial-
ization or nalization of variables, and nalizes the variablesin the final |y block. This slows
down these procedures (with 5-10frames can be disabled. One should be careful with this directive,
because it can lead to memory leaks if an exception occurs inside the routine. Therefore, standard it
is set to OFF.

1.1.25 $I NFO: Generate info message

If the generation of info isturned on, through the - vi command-line option, then
{$I NFO This was coded on a rainy day by Bugs Bunny}

will display an info message when the compiler encountersit.

Thisisuseful in conjunction with the { $| FDEF} directive, to show information about which part of
the code is being compiled.

1.1.26 $I NLI NE: Allow inline code.

The {$I NLI NE ON} directive tells the compiler that the | nl i ne procedure modi er should be
allowed. Procedures that are declared inline are copied to the places where they are called. This has
the effect that there is no actual procedure call, the code of the procedure is just copied to where the
procedure is needed, this results in faster execution speed if the function or procedure is used alot.

By default, |1 nl i ne procedures are not alowed. This directive must be speci ed to use inlined
code. The directive is equivalent to the command-line switch - Si . For more information on inline
routines, consult the Reference guide.

1.1.27 $I NTERFACES : Specify Interface type.

The { $| NTERFACES} directive tells the compiler what it should take as the parent interface of an
interface declaration which does not explicitly specify a parent interface. By default the Windows
COM | Unknown interface is used. Other implementations of interfaces (CORBA or Java) do not
necessarily have thisinterface, and for such cases, this directive can be used. It accepts the following
three values:

19

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

COM Interfaces will descend from | Unknown.
CORBA Interfaceswill not have a parent.

DEFAULT Currently, thisis COM.

1.1.28 $I or $I OCHECKS : Input/Output checking

The{$l -} or{$| OCHECKS OFF} directivetellsthe compiler not to generate input/output check-
ing code in the program. By default, the compiler generates I/O checking code. This behaviour can
be controlled globally with the- G switch.

When compiling using the- Ci compiler switch, the Free Pascal compiler insertsinput/output check-
ing code after every input/output call in the code. If an error occurred during input or output, then a
run-time error will be generated. This switch can also be used to avoid this behaviour.

If no 1/0O checking code is generated, to check if something went wrong, the | OResul t function
can be used to see if everything went without problems.

Conversely, { $I +} will turn error-checking back on, until ancther directive is encountered which
turns it off again.

The most common use for this switch is to check if the opening of a le went without problems, as
in the following piece of code:

assign (f, file.txt’);
{$1-}
rewite (f);
{31 +}
if IOResult<>0 then
begi n
Witeln ("Error opening file: "file.txt"");
exit
end;

Seethel CResul t function explanation in Reference guide for adetailed description of the possible
errors that can occur when using input/output checking.

1.1.29 $I or $I NCLUDE : Include le

The {$I filename} or {$I NCLUDE fi | ename} directive tells the compiler to read further
statements from the le fi | enane. The statements read there will be inserted as if they occurred
inthe current le.

The compiler will append the .pp extension to the le if no extension is given. Do not put the
lename between quotes, as they will be regarded as part of the I€'s name.

Include les can be nested, but not in nitely deep. The number of lesisrestricted to the number of
le descriptors available to the Free Pascal compiler.

Contrary to Turbo Pascal, include les can cross blocks. |.e. ablock can start in one le (with a
Begi n keyword) and can end in another (with a End keyword). The smallest entity in an include
le must be atoken, i.e. an identi er, keyword or operator.

The compiler will 1ook for the leto includein the following places:

1. It will look in the path speci ed in theinclude Ie name.

2. It will look in the directory where the current source leis.

20

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

3. itwill look in al directories speci ed in theinclude le search path.

Directories can be added to the include e search path withthe -1 command-line option.

1.1.30 $I or $I NCLUDE : Include compiler info
In thisform:

{$1 NCLUDE %xxx%
where xxX is one of the following:

DATE Insertsthe current date.

FPCTARGET Insertsthe target CPU name. (deprecated, use FPCTARGETCPU)
FPCTARGETCPU Inserts the target CPU name.

FPCTARGETOS Insertsthe target OS name.

FPCVERSION Current compiler version number.

FILE Filenamein which the directive isfound.

LINE Linenumer on which the directiveis found.

TIME Current time.

If xxx is none of the above, then it is assumed to be the name of an environment variable. Itsvalue
will be fetched. As areult, this will generate a macro with the value of these things, asif it were a
string.

For example, the following program

Pr ogr am | nf oDeno;
Const User = {$| %JSER% ;

begi n
Wite (' This programwas conpiled at ', {$l %I ME%%);
Witeln (" on ', {$l YDATEY);
Witeln ('By ', User);
Witeln (' Conpiler version: ', {$l %PCVERSI ON%);
Witeln (' Target CPU. ', {$l %PCTARGET%);

end.

Creates the following output:

Thi s program was conpiled at 17:40:18 on 1998/ 09/ 09
By m chael

Conpi l er version: 0.99.7

Target CPU. i 386

1.1.31 $I1 386_XXX: Specify assembler format (Intel 80x86 only)

This switch selects the assembler reader. {$1 386_XXX} has the same effect as { SASMMODE
XXX} , section 1.1.2, page 13

This switch is deprecated, the { SASMMODE XXX} directive should be used instead.

21

CHAPTER 1. COMPILER DIRECTIVES

1.1.32 3$L or $LI NK: Link object le

The{$L fil enanme} or{$LI NK fil enane} directivetellsthe compiler that the le lename
should be linked to the program. This cannot be used for libraries, see section section 1.1.33, page
22 for that.

The compiler will look for this lein the following way:

1. It will look in the path speci ed in the object e name.
2. 1t will look in the directory where the current source leis.

3. itwill look in al directories speci ed in the object |e search path.

Directories can be added to the object e search path with the - Fo option.

On LINUX systems and on operating systemswith case-sensitive lesystems(such as UNIX systems),
the name s case sensitive, and must be typed exactly asit appears on your system.

Remark: Take care that the object le you'relinking isin aformat the linker understands. Which format this
is, depends on the platform you'reon. Typingl d or | d - hel p onthe command line gives alist of
formats| d knows about.

Other les and options can be passed to the linker using the - k command-line option. More than
one of these options can be used, and they will be passed to the linker, in the order that they were
speci ed on the command line, just before the names of the object les that must be linked.

1.1.33 S$LI NKLI B: Link to alibrary

The{ $LI NKLI B nane} will link to alibrary name. This hasthe effect of passing - | nane to the
linker.

As an example, consider the following unit:
unit getlen;

interface
{$LI NKLI B c}

function strlen (P : pchar) : l|ongint;cdecl;

i mpl ement ation

function strlen (P : pchar) : 1ongint;cdecl;external;
end.

If one would issue the command

ppc386 foo. pp

where foo.pp has the above unit initsuses clause, then the compiler would link the program to the
c library, by passing the linker the - | ¢ option.

The same effect could be obtained by removing the linklib directive in the above unit, and specify
- k- I ¢ on the command-line:

ppc386 -k-1c foo.pp

22

CHAPTER 1. COMPILER DIRECTIVES

1.1.34 $Mor $TYPEI NFO: Generate type info

For classes that are compiled in the { $Mt} or { STYPEI NFO ON} state, the compiler will generate
Run-Time Type Information (RTTI). All descendent objects of an object that was compiled in the
{ $M+} state will get RTTI information too, as well as any published classes. By default, no Run-
Time Type Information is generated. The TPer si st ent object that is present in the FCL (Free
Component Library) is generated in the { $M+} state. The generation of RTTI alows programmers
to stream objects, and to access published properties of objects, without knowing the actual class of
the object.

The run-time type information is accessible through the Typl nf o unit, which is part of the Free
Pascal Run-Time Library.

Remark: The streaming system implemented by Free Pascal requires that al streamable components be de-
scendent from TPer si st ent .

1.1.35 $MACRO: Allow use of macros.

Inthe { SMACRO ON} state, the compiler alows to use C-style (although not as elaborate) macros.
Macros provide ameans for simple text substitution. More information on using macros can be found
in the section 2.2, page 38 section. This directive is equivalent to the command-line switch - Sm

By default, macros are not allowed.

1.1.36 $MAXFPUREQ STERS : Maximum number of FPU registers for
variables

The { SMAXFPUREQ STERS XXX} directive tells the compiler how much oating point variables
can be kept in the oating point processor registers on an Intel X86 processor. This switchisignored
unlessthe- Or (useregister variables) optimization is used.

Thisis quite tricky because the Intel FPU stack is limited to 8 entries. The compiler uses a heuristic
algorithm to determine how much variables should be put onto the stack: in leaf proceduresit is
limited to 3 and in non leaf proceduresto 1. But in case of adeep call tree or, even worse, arecursive
procedure this can still lead to a FPU stack over ow, so the user can tell the compiler how much
(oating point) variables should be kept in registers.

The directive accepts the following arguments:

N where N is the maximum number of FPU registers to use. Currently this can be in the range O to
7.

Normal restores the heuristic and standard behavior.

Default restores the heuristic and standard behaviour.

Remark: Thisdirectiveisvalid until the end of the current procedure.

1.1.37 $MESSACE : Generate info message
If the generation of info isturned on, through the - vi command-line option, then

{$MESSAGE Thi s was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encountersit. The effect isthe sameasthe{ $1 NFC}
directive.

23

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.38 3$MWX: Intel MMX support (Intel 80x86 only)
Free Pascal supports optimization for the MM X Intel processor (see also chapter 5).

This optimizes certain code parts for the MM X Intel processor, thus greatly improving speed. The
speed is noticed mostly when moving large amounts of data. Things that change are

e Datawith a size that is a multiple of 8 bytes is moved using the novq assembler instruction,
which moves 8 bytes at atime

MMX support is NOT emulated on non-MMX systems, i.e. if the processor doesn’t have the MM X
extensions, the MM X optimizations cannot be used.

When MM X support is on, it is not allowed to do oating point arithmetic. It is allowed to move
oating point data, but no arithmetic can be done. If oating point math must be done anyway, rst
MM X support must be switched off and the FPU must be cleared using the enmrs function of the
Cpu unit.

The following example will make this more clear:

Pr ogr am MVXDeno;
uses nmmx;

var
dl : doubl e;
a : array[0..10000] of double;
i : longint;

begi n
dl: =1.0;
{ $rmx+}
{ floating point data is used, but we do no_ arithmetic }
for i:=0 to 10000 do
a[i]:=d2; { this is done with 64 bit noves }
{ $rmx- }
enms; { clear fpu }
{ now we can do floating point arithnetic }

end.

See, however, the chapter on MM X (5) for more information on this topic.

1.1.39 $NOTE: Generate note message

If the generation of notesisturned on, through the - vn command-line option or the { SNOTES ON}
directive, then

{$NOTE Ask Santa C aus to | ook at this code}

will display a note message when the compiler encountersit.

1.1.40 $NOTES: Emit notes

{SNOTES ON} switches the generation of notes on. { SNOTES OFF} switches the generation of
notes off. Contrary to the command-line option - vn thisisalocal switch, thisisuseful for checking
parts of the code.

24

CHAPTER 1. COMPILER DIRECTIVES

By default, { $SNOTES} is off.

1.1.41 $OUTPUT_FORVAT : Specify the output format

{ $OUTPUT_FORNMAT f or mat } hasthe samefunctionality asthe- A command-line option: it tells
the compiler what kind of object le must be generated. You can specify this switch only before the
Pr ogramor Uni t clause in your source le. The different kinds of formats are shown in table
(1.2).

The default output format depends on the platform the compiler was compiled on.

Table 1.1: Formats generated by the x86 compiler

Switchvalue Generated format

AS AT&T assembler le.

AS AOUT Go32vl assembler le.
ASW AT& T Win32 assembler le.
COFF Go32v2 COFF object le.
MASM Masm assembler le.

NASM Nasm assembler le.

NASMCOFF Nasm assembler le (COFF format).
NASMELF Nasm assembler le (ELF format).
PECOFF PECOFF object le (Win32).
TASM Tasm assembler le.

1.1.42 $P or $OPENSTRI NGS : Use open strings

If this switch is on, al function or procedure parameters of type string are considered to be open
string parameters; this parameter only has effect for short strings, not for ansistrings.

When using openstrings, the declared type of the string can be different from the type of string that is
actually passed, even for strings that are passed by reference. The declared size of the string passed
can be examined with the Hi gh(P) call.

Default the use of openstringsis off.

1.1.43 $PACKENUM: Minimum enumeration type size

Thisdirectivetellsthe compiler the minimum number of bytesit should use when storing enumerated
types. It is of the following form:

{ SPACKENUM xxx}
{ $M NENUMBI ZE xxx}

Where the form with $M NENUMSI ZE is for Delphi compatibility. xxx can beoneof 1, 2 or 4, or
NORMAL or DEFAULT.

As an dlternative form one can use { $Z1}, { $Z22} {$24}. Contrary to Delphi, the default is
{ $z24}).

So the following code

{ $SPACKENUM 1}

25

Remark:

CHAPTER 1. COMPILER DIRECTIVES

Type
Days = (nonday, tuesday, wednesday, thursday, friday,
sat urday, sunday);

will use 1 byte to store a variable of type Days, whereas it nomally would use 4 bytes. The above
codeis equivalent to

{$21}
Type
Days = (nonday, tuesday, wednesday, thursday, friday,
sat urday, sunday);

1.1.44 $PACKRECORDS : Alignment of record elements
This directive controls the byte alignment of the elementsin arecord, object or class type de nition.
Itis of the following form:

{ $PACKRECORDS n}

Where n isone of 1, 2, 4, 16, C, NORMAL or DEFAULT. This means that the elements of a record
that have size greater than n will be aligned on n byte boundaries. Elements with size less than or
equal to n will be aligned to a natural boundary, i.e. to a power of two that is equal to or larger than
the element’s size. Thetype Cis used to specify alignment as by the GNU CC compiler. It should be
used only when making import units for C routines.

The default alignment (which can be selected with DEFAULT) is 2, contrary to Turbo Pascal, where
itisl.

More information on this and an example program can be found in the reference guide, in the section
about record types.

1.1.45 $QSOVERFLONCHECKS: Over ow checking

The {$Q+} or { SOVERFLOANCHECKS ON} directive turns on integer over ow checking. This
means that the compiler inserts code to check for over ow when doing computations with integers.

When an over ow occurs, the run-time library will print amessage Over fl ow at xxx, and exit
the program with exit code 215.

Over ow checking behaviour is not the same as in Turbo Pascal since all arithmetic operations are
done via 32-bit or 64-bit values. Furthermore, the | nc() and Dec standard system procedures are
checked for over ow in Free Pascal, while in Turbo Pascal they are not.

Using the{ $Q } switch switches off the over ow checking code generation.

The generation of over ow checking code can a so be controlled using the - Co command line com-
piler option (see Users guide).

1.1.46 $Ror $SRANGECHECKS : Range checking

By default, the compiler doesn’t generate code to check the ranges of array indices, enumeration
types, subrange types, etc. Specifying the { $R+} switch tells the computer to generate code to
check these indices. If, at run-time, an index or enumeration type is speci ed that is out of the
declared range of the compiler, then a run-time error is generated, and the program exits with exit
code 201. This can happen when doing a typecast (implicit or explicit) on an enumeration type or
subrange type.

26

file:../user/user.html

Remark:

CHAPTER 1. COMPILER DIRECTIVES

The { SRANCECHECKS COFF} switch tells the compiler not to generate range checking code. This
may result in faulty program behaviour, but no run-time errors will be generated.

The standard functions val and Read will also check ranges when the call is compiled in { $R+}
mode.

1.1.47 $SATURATI ON: Saturation operations (Intel 80x86 only)

This works only on the intel compiler, and MM X support must be on ({ $SMUX +}) for thisto have
any effect. See the section on saturation support (section 5.2, page 56) for more information on the
effect of this directive.

1.1.48 $SETC: De ne and assign a value to a symbol

In MAC mode, this directive can be used to de ne compiler symbols. It is an aternative to the
$DEFI NE directive for macros. It is supported for compatibility with existing Mac OS pascal com-
pilers. It will de ne a symbol with a certain value (called a compiler variable expression).

The expression syntax is similar to expressions used in macros, but the expression must be evaluated
at compile-time by the compiler. This means that only some basic arithmetic and logical operators
can be used, and some extra possihilities such as the TRUE,FAL SE and UNDEFI NED operators:

{ $SETC TARGET_CPU_PPC
{ $SETC TARGET_CPU_68K
{ $SETC TARGET_CPU_X86
{ $SETC TARGET_CPU M PS :
{ $SETC TARGET_OS_UNI X

NOT UNDEFI NED CPUPOVERPC}

NOT UNDEFI NED CPUMBSK}

NOT UNDEFI NED CPUI 386}

FALSE}

(NOT UNDEFI NED UNI X) AND (UNDEFI NED DARW N)}

The: = assignment symbol may be replaced with the = symbol.

Note that this command works only in MACPAS mode, but independent of the - Smcommand-line
option or { SMACRCS } directive.

1.1.49 $STATI C: Allow use of St ati ¢ keyword.

If you specify the{ $STATI C ON} directive, then St at i ¢ methodsarealowed for objects. St ati ¢
objects methods do not requirea Sel f variable. They are equivalent to C ass methods for classes.
By default, St at i ¢ methods are not alowed. Class methods are aways allowed.

By default, the address operator returns an untyped pointer.
Thisdirective is equivalent to the - St command-line option.

1.1.50 $STOP: Generate fatal error message

The following code
{$STOP This code is erroneous !}

will display an error message when the compiler encounters it. The compiler will immediatly stop
the compilation process.

It has the same effect asthe { SFATAL} directive.

27

CHAPTER 1. COMPILER DIRECTIVES

1.1.51 $T or $TYPEDADDRESS : Typed address operator (@)

Inthe{ $T+} or { $TYPEDADDRESS ON} statethe @ operator, when applied to avariable, returns
aresult of type T , if thetype of thevariableisT. Inthe{ $T- } state, the result isaways an untyped
pointer, which is assignment compatible with all other pointer types.

1.1.52 $UNDEF : Unde ne a symbol
The directive

{ SUNDEF nane}

un-de nesthe symbol nane if it was previously de ned. Nan® is case insensitive.

1.1.53 $Vor $VARSTRI NGCHECKS : Var-string checking

When in the + or ON state, the compiler checks that strings passed as parameters are of the same,
identical, string type as the declared parameters of the procedure.

1.1.54 $WAI T : Wait for enter key press

If the compiler encounters a
{$WAI T}

directive, it will resume compiling only after the user has pressed the enter key. If the generation of
info messages is turned on, then the compiler will display the following message:

Press <return> to continue

before waiting for a keypress.

Remark: This may interfere with automatic compilation processes. It should be used for debugging purposes
only.

1.1.55 $WARNI NG: Generate warning message

If the generation of warningsisturned on, through the - vwcommand-line option or the{ $WARNI NGS
ON} directive, then

{$WARNI NG Thi s i s dubious code}

will display awarning message when the compiler encountersiit.

1.1.56 $WARNI NGS : Emit warnings

{ SWARNI NGS ON} switches the generation of warnings on. { SWARNI NGS OFF} switches the
generation of warnings off. Contrary to the command-line option - vw thisis aloca switch, thisis
useful for checking parts of your code.

By default, no warnings are emitted.

28

CHAPTER 1. COMPILER DIRECTIVES

1.1.57 $Xor $EXTENDEDSYNTAX : Extended syntax

Extended syntax allows you to drop the result of a function. This means that you can use afunction
call asif it were a procedure. Standard this feature ison. You can switch it off using the { $X- } or
{ SEXTENDEDSYNTAX OFF} directive.

The following, for instance, will not compile:

function Func (var Arg : sometype) : |ongint;
begi n

{ declaration of Func }

end;

{$X-}

Func (A);

The reason this construct is supported is that you may wish to call afunction for certain side-effects
it has, but you don't need the function result. In this case you don’t need to assign the function result,
saving you an extra variable.

The command-line compiler switch - Sal hasthe same effect asthe { $X+} directive.
By default, extended syntax is assumed.

1.2 Global directives

Global directives affect the whole of the compilation process. That iswhy they also have acommand-
line counterpart. The command-line counterpart is given for each of the directives. They must be
speci ed beforetheuni t or pr ogr amclausein asource le, or they will have no effect.

1.2.1 $APPI D: Specify application ID.

Used on the PALM os only, it can be set to specify the application name, which can be viewed on the
Palm only. Thisdirective only makes sense in a program source le, not in aunit.

{ $APPI D MyAppl i cati on}

1.2.2 $APPI D: Specify application name.

Used on the PALM os only, it can be set to specify the application name which can be viewed on the
Palm only. This directive only makes sense in a program source le, not in a unit.

{ $APPNAVE My Application, conpiled using Free Pascal.}

1.2.3 3$APPTYPE : Specify type of application.

Thisdirectiveis currently only supported on the following targets. Win32, Mac, OS2 and AmigaOS.
On other targets, the directive isignored.

The{ $APPTYPE XXX} acceptsoneargument which speci eswhat kind of applicationiscompiled.
It can have the following values:

29

CHAPTER 1. COMPILER DIRECTIVES

CONSOLE A console application. A terminal will be created and standard input, output and stan-
dard error le descriptors will be initialized. 1n Windows, a terminal window will be created.
Thisisthe default.

Note that on Mac OS such applications cannot take command-line options, nor return a result
code. They will runin a special terminal window, implemented as a SIOW application, see the
MPW documentation for details.

On 0s/2, these applications can run both full-screen and in aterminal window.
LINUX applications are always console applications. The application itself can decideto close
the standard les, though.

FS speci esafull-screen VIO application on 0s/2. These applications use a specia BIOS-like API
to program the screen. 0s/2 starts these application alwaysin full screen.

GUI Specifying the { SAPPTYPE CUI } directive will mark the application as a graphical appli-
cation; no console window will be opened when the application is run. No stanrdard le
descriptorswill beinitialized, using them (with e.g. wr i t el n statements) will produce arun-
time error. If run from the command-line, the command prompt will be returned immediatly
after the application was started.

On 0s/2 and Mac OS, the GUI application type creates a GUI application, as on Windows. On
0s/2, thisisareal Presentation Manager application.

TOOL thisis aspecia directive for the Mac OS. It tells the compiler to create a tool application:
It initializes input, output, stderr les, it can take parameters and return a result code. It is
implemented as an MPW tool which can only be run by MPW or Tool Server.

Care should be taken when compiling GUI applications; thel nput and Cut put lesarenot avail-
able in a GUI application, and attempting to read from or write to them will result in a run-time
error.

Itis possible to determine the application type of aWiINDOWS or AMIGA application at runtime. The
| sConsol e constant, declared in the Win32 and Amiga system units as

Const
| sConsol e : Bool ean;

contains Tr ue if the application is a console application, Fal se if the application isa GUI applica-
tion.

1.2.4 $CALLI NG: Default calling convention

This directive allows to specify the default calling convention used by the compiler, when no calling
convention is speci ed for a procedure or function declaration. It can be one of the following values:

CDECL C compiler calling convention.
CPPDECL C++ compiler calling convention.
FAR16 Ignored, but parsed for compatibility reasons.

FPCCALL Older FPC (1.0.X and before) standard calling convention. If alot of direct assembler
blocks are used, this mode should be used for maximum compatibility.

INLINE Useinline code: the code for the function is inserted whenever it is called.

PASCAL Pascal calling convention.

30

Remark:

CHAPTER 1. COMPILER DIRECTIVES

REGISTER Register calling convention.

SAFECALL Safecal calling convention (used in COM): The called procedure/function saves all
registers.

STDCALL Windows library calling convention.
SOFTFLOAT For ARM processors.

It is equivalent to the - Cc command-line option.

1.2.5 $COPYRI GHT specify copyright info

Thisis intended for the NETWARE version of the compiler: it speci es the copyright information
that can be viewed on amodule for a Netware OS.

For example:

{ $COPYRI GHT GNU copyl eft. conpil ed using Free Pascal}

1.2.6 $Dor $DEBUA NFO: Debugging symbols

When this switch is on, the compiler inserts GNU debugging information in the executable. The
effect of this switch is the same as the command-line switch - g.

By default, insertion of debugging information is off.

1.2.7 $DESCRI PTI ON: Application description

This switch isrecognised for compatibility only, but isignored completely by the compiler. At alater
stage, this switch may be activated.

1.2.8 3$E: Emulation of coprocessor

This directive controls the emulation of the coprocessor. There is no command-line counterpart for
thisdirective.

Intel 80x86 version

When this switch is enabled, all oating point instructions which are not supported by standard
coprocessor emulators will give out awarning.

The compiler itself doesn’t do the emulation of the coprocessor.

To use coprocessor emulation under bos go32v2 you must use the emu387 unit, which contains
correct initialization code for the emulator.

Under LINUX and most UNIX’ es, the kernel takes care of the coprocessor support.

M otorola 680x0 ver sion

When the switch ison, no oating point opcodes are emitted by the code generator. Instead, internal
run-time library routines are called to do the necessary calculations. In this case all rea types are
mapped to the single IEEE oating point type.

By default, emulation is on for non-unix targets. For unix targets, oating point emulation (if re-
quired) is handled by the operating system, and by default it is off.

31

CHAPTER 1. COMPILER DIRECTIVES

1.2.9 $G: Generate 80286 code

This option is recognised for Turbo Pascal compatibility, but is ignored, since the compiler works
only on 32-bit and 64-bit processors.

1.2.10 $I NCLUDEPATH: Specify include path.

Thisoption servesto specify theinclude path, where the compiler looksfor include les. { $1 NCLUDEPATH
XXX} will add XXX to theinclude path. XXX can contain one or more paths, separated by semi-colons
or colons.

For example:
{$] NCLUDEPATH . ./inc;../i 386}
{$l strings.inc}

will add the directories ../inc and ../i386 to the include path of the compiler. The compiler will 1ook
for the le strings.inc in both these directories, and will include the rst found le. Thisdirective is
equivalent to the- Fi command-line switch.

Caution isin order when using this directive: If you distribute les, the places of the les may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
befair to say that you should avoid using absolute paths, instead use relative paths, asin the example
above. Only

use this directiveif you are certain of the places wherethe lesreside. If you are not sure, it is better
practice to use make les and make le variables.

1.2.11 $L or SLOCALSYMBOLS : Local symbol information

This switch (not to be confused withthe{ $L fi | e} lelinking directive) isrecognised for Turbo
Pascal compatibility, but isignored. Generation of symbol information iscontrolled by the $D switch.

1.2.12 $LI BRARYPATH: Specify library path.

This option serves to specify the library path, where the linker looks for static or dynamic libraries.
{ $L1 BRARYPATH XXX} will add XXX to the library path. XXX can contain one or more paths,
separated by semi-colons or colons.

For example:
{ $LI BRARYPATH /usr/ X11/li b;/usr/local /1i b}
{$LI NKLI B X11}

will add the directories /usr/X11/lib and /usr/local/lib to the linker library path. The linker will
look for the library libX11.so in both these directories, and use the rst found le. This directiveis
equivalent to the- FI command-line switch.

Caution isin order when using this directive: If you distribute les, the places of the libraries may
not be the same as on your machine; moreover, the directory structure may be different. In general it
would be fair to say that you should avoid using this directive. If you are not sure, it is better practice
to use make les and make le variables.

32

CHAPTER 1. COMPILER DIRECTIVES

1.2.13 $Mor SMEMORY : Memory sizes
This switch can be used to set the heap and stacksize. It'sformat is as follows:

{$M St ackSi ze, HeapSi ze}

where St ackSi ze and HeapSi ze should be two integer values, greater than 1024. The rst

number sets the size of the stack, and the second the size of the heap. (Stack setting isignored under
LINUX, NETBSD and FREEBSD). The two numbers can be set on the command line using the - Ch
and - Cs switches.

1.2.14 $MODE : Set compiler compatibility mode

The { $MODE} sets the compatibility mode of the compiler. Thisis equivalent to setting one of the
command-line options - So, - Sd, - Sp or - S2. it has the following arguments:

Default Default mode. This reverts back to the mode that was set on the command-line.

Delphi Delphi compatibility mode. All object-pascal extensions are enabled. Thisisthe same asthe
command-line option - Sd.

TP Turbo pascal compatibility mode. Object pascal extensions are disabled, except ansistrings,
which remain valid. Thisisthe same as the command-line option - So.

FPC FPC mode. Thisisthe default, if no command-line switch is supplied.
OBJFPC Object pascal mode. Thisisthe same asthe - S2 command-line option.
GPC GNU pascal mode. Thisisthe same asthe - Sp command-line option.

MACPAS MACPAS mode. In this mode, the compiler tries to be more compatible to commonly
used pascal dialects onthe Mac OS, such as Think Pascal, Metrowerks Pascal, MPW Pascal.

For an exact description of each of these modes, see appendix D, on page 126.

1.2.15 $N: Numeric processing

This switch isrecognised for Turbo Pascal compatibility, but is otherwise ignored, since the compiler
always uses the coprocessor for oating point mathematics.

1.2.16 $0O: Overlay code generation
This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored.

1.2.17 $OBJECTPATH: Specify object path.

Thisoption servesto specify the object path, wherethe compiler looksfor object les. { SOBJECTPATH
XXX} will add XXX to the object path. XXX can contain one or more paths, separated by semi-colons
or colons.

For example:
{$OBIECTPATH . ./inc;../i 386}

{$L strings. o}

33

CHAPTER 1. COMPILER DIRECTIVES

will add the directories ../inc and ../i386 to the object path of the compiler. The compiler will ook
for the le strings.o in both these directories, and will link the rst found lein the program. This
directive is equivalent to the - Fo command-line switch.

Caution isin order when using this directive: If you distribute les, the places of the les may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
befair to say that you should avoid using absolute paths, instead use relative paths, asin the example
above. Only use this directive if you are certain of the places where the lesreside. If you are not
sure, it is better practice to use make les and make le variables.

1.2.18 $PROFI LE: Pro ling

This directive turnsthe generation of pro ling code on (or off). Itisequivalent to the - gp command-
line option. Default is OFF. This directive only makes sense in a program source le, not in a unit.

1.2.19 $S: Stack checking

The { $S+} directive tells the compiler to generate stack checking code. This generates code to
check if a stack over ow occurred, i.e. to see whether the stack has grown beyond its maximally
allowed size. If the stack grows beyond the maximum size, then a run-time error is generated, and
the program will exit with exit code 202.

Specifying { $S-} will turn generation of stack-checking code off.
The command-line compiler switch - Ct has the same effect asthe { $S+} directive.
By default, no stack checking is performed.

1.2.20 $SMARTLI NK: Use smartlinking

A unit that is compiled in the { $SMARTLI NK ON} state will be compiled in such away that it can
be used for smartlinking. This meansthat the unit is chopped in logical pieces: each procedureis put
init'sown object le, and all object les are put together in a big archive. When using such a unit,
only the pieces of code that you really need or call, will be linked in your program, thus reducing the
size of your executable substantially.

Beware: using smartlinked units slows down the compilation process, because a separate object le
must be created for each procedure. If you have units with many functions and procedures, this can
be atime consuming process, even more so if you use an external assembler (the assembler iscalled
to assemble each procedure or function code block separately).

The smartlinking directive should be speci ed before the unit declaration part:
{ $SMARTLI NK ON}
Unit MyUnit;

I nterface

This directive is equivalent to the - Cx command-line switch.

1.2.21 $THREADNAME : Set thread name in Netware
This directive can be set to specify the thread name when compiling for Netware.

CHAPTER 1. COMPILER DIRECTIVES

1.2.22 $THREADI NG: Allow use of threads.

Thisdirective is obsolete. It isno longer used, and is recognized for backwards compatibility only.

1.2.23 $UNI TPATH: Specify unit path.

This option serves to specify the unit path, where the compiler looks for unit les. { $UNI TPATH
XXX} will add XXX to the unit path. XXX can contain one or more paths, separated by semi-colons
or colons.

For example:
{$UNI TPATH . ./units;../i386/units}
Uses strings;

will add the directories ../units and ../i386/units to the unit path of the compiler. The compiler will
look for the le strings.ppu in both these directories, and will link the rst found lein the program.
Thisdirectiveis equivalent to the - Fu command-line switch.

Caution isin order when using this directive: If you distribute les, the places of the les may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
befair to say that you should avoid using absolute paths, instead use relative paths, asin the example
above. Only use this directive if you are certain of the places where the lesreside. If you are not
sure, it is better practice to use make les and make le variables.

1.2.24 $VERSI ON: Specify DLL version.

On WINDOWS, this can be used to specify a version number for a library. This version number
will be used when the library isinstalled, and can be viewed in the Windows Explorer by opening
the property sheet of the DLL and looking on the tab 'Version’. The version number consists of
minimally one, maximum 3 numbers:

{ $VERSI ON 1}

Or:

{$VERSI ON 1. 1}
And even:

{$VERSI ON 1. 1.1}

This can not yet be used for executables on Windows, but may be activated in the future.

1.2.25 $Wor $STACKFRAMES : Generate stackframes

The { $W switch directive controls the generation of stackframes. In the on state, the compiler will
generate a stackframe for every procedure or function.

In the off state, the compiler will omit the generation of a stackframe if the following conditions are
satis ed:

e The procedure has no parameters.

e The procedure has no local variables.

35

CHAPTER 1. COMPILER DIRECTIVES

e |f the procedure isnot an assenbl er procedure, it must not haveaasm . . . end; block.

e it isnot aconstructor or destructor.

If these conditions are satis ed, the stack frame will be omitted.

1.2.26 $Y or $REFERENCEI NFO: Insert Browser information

This switch controls the generation of browser inforation. It is recognized for compatibility with
Turbo Pascal and Delphi only, as Browser information generation is not yet fully supported.

36

Chapter 2

Using conditionals, messages and
macr os

The Free Pascal compiler supports conditionals as in normal Turbo Pascal. It does, however, more
than that. It allows you to make macros which can be used in your code, and it allows you to de ne
messages or errors which will be displayed when compiling. It aso has support for compile-time
variables and compile-time expressions, as commonly found in Mac OS compilers.

2.1 Conditionals

The rules for using conditional symbols are the same as under Turbo Pascal or Delphi. Dening a
symbol goes as follows:

{$defi ne Synbol}

From this point on in your code, the compiler knows the symbol Synbol . Symbols are, like the
Pascal language, case insensitive.

You can aso dene a symbol on the command line. the - dSynbol option de nes the symbol
Synbol . You can specify as many symbols on the command line as you want.

Unde ning an existing symbol is donein asimilar way:
{$undef Synbol }

If the symbol didn’t exist yet, this doesn’t do anything. If the symbol existed previously, the symbol
will be erased, and will not be recognized any more in the code following the { $undef ...}
statement.

You can also unde ne symbols from the command line with the - u command-line switch.

To compile code conditionally, depending on whether a symbol is de ned or not, you can enclose
thecodeina{$i f def Synbol } ...{$endi f} pair. For instance the following code will never
be compiled:

{$undef MySynbol }
{$i fdef Mysynbol }
DoSonet hi ng;

{$endi f}

37

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

Similarly, you can enclose your code in a{ $i f ndef Synbol} ...{$endi f} par. Then the
code between the pair will only be compiled when the used symbol doesn’t exist. For example, in
the following example, the call to the DoSorret hi ng will always be compiled:

{$undef MySynbol }
{$i f ndef Mysynbol }
DoSonet hi ng;

{$endi f}
You can combine the two alternatives in one structure, namely as follows

{$i fdef Mysynbol }
DoSonet hi ng;
{$el se}
DoSonet hi ngEl se
{$endi f}

In thisexample, if MySynbol exists, then the call to DoSonet hi ng will be compiled. If it doesn’t
exist, the call to DoSonret hi ngEl se iscompiled.

2.1.1 Prede ned symbols

The Free Pascal compiler de nes some symbols before starting to compile your program or unit.
You can use these symbols to differentiate between different versions of the compiler, and between
different compilers. To get all the possible de nes when starting compilation, see appendix G

Symbols, even when they’re de ned in the interface part of a unit, are not avail able outside that unit.

2.2 Macros

Macros are very much like symbols or compile-time variables in their syntax, the difference is that
macros have a value whereas a symbol simply is de ned or is not de ned. Furthermore, following
the de nition of amacro, any occurrence of the macro in the pascal source will be replaced with the
value of the macro (much like the macro support in the C preprocessor). If macro support is required,
the - Smcommand-line switch must be used to switch it on, or the directive must be inserted:

{ SMACRCS ON}

otherwise macros will be regarded as a symbol.

Dening a macro in a program is done in the same way as de ning a symbol; ina {$defi ne}
preprocessor statement®:

{$define ident:=expr}

If the compiler encountersi dent in the rest of the source le, it will be replaced immediately by

expr . This replacement works recursive, meaning that when the compiler expanded one macro, it
will look at the resulting expression again to see if another replacement can be made. This means
that care should be taken when using macros, because an in nite loop can occur in this manner.

Here are two examples which illustrate the use of macros:

1In compiler versions older than 0.9.8, the assignment operator for amacroswasn't : = but =

38

Remark:

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$define sum =a: =a+b;}

sum { will be expanded to ’a:=a+b;’
remark the absence of the senicol on}

{$define b: =100}
sum { WIIl be expanded recursively to a:=a+100; }

The previous example could go wrong:

{$defi ne sum =a: =a+b; }

sum { will be expanded to 'a:=a+tb;’
remark the absence of the senicol on}

{$define b=sun} { DON T do this !!1!1}
sum { WII be infinitely recursively expanded \dots }

On my system, the last example results in a heap error, causing the compiler to exit with a run-time
error 203.

Macros de ned in the interface part of a unit are not available outside that unit! They can just be
used as a notational convenience, or in conditional compiles.

By default the compiler prede nes three macros, containing the version number, the release number
and the patch number. They arelisted in table (2.1).

Table 2.1: Prede ned macros

Symbol Contains

FPC_VERSI ON The version number of the compiler.
FPC_RELEASE The release number of the compiler.
FPC_PATCH The patch number of the compiler.

Don't forget that macro support isn’'t on by default. It must be turned on with the - Smcommand-line
switch or using the { SMACROS ON} directive.

2.3 Compiletimevariables

In MacPas mode, compile time variables can be de ned. They are distinct from symbolsin that they
have avalue, and they are distinct from macros, in that they cannot be used to replace portions of the
source text with their value. Their behaviour are compatible with compile time variables found in
popular pascal compilers for Macintosh.

A compiletime variableis de ned like this:
{$SETC ident:= expression}
The expression is a so-called compile time expression, which is evaluated once, at the point where

the { $SETC } directve is encountered in the source. The resulting value is then assigned to the
compiletime variable.

39

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

A second { $SETC } directive for the same variable overwrites the previous value.

Contrary to macros and symbols, compile time variables de ned in the Interface part of a unit are
exported. This means their value will be available in units which uses the unit in which the variable
isde ned. Thisrequiresthat both units are compiled in macpas mode.

The big difference between macros and compile time variables is that the former is a pure text sub-
gtitution mechanism (much like in C), where the latter resemble normal programming language vari-
ables, but they are available to the compiler only.

In mode MacPas, compile time variables are always enabled.

2.4 Compiletime expressions

2.4.1 De nition

Except for the regular Turbo Pascal constructs for conditional compilation, the Free Pascal compiler
also supports a stronger conditional compile mechanism: The{ $i f } construct, which can be used
to evaluate compile-time expressions.

The prototype of this construct is as follows:

{$if expr}

Compi | eTheselLi nes;
{ $el se}

Bet t er Conpi | eTheselLi nes;
{$endif}

The content of an expression isrestricted to what can be evaluated at compile-time:

e Constants (strings, numbers)
e Macros
e Compile time variables (mode MacPas only)

e Pascal constant expression (mode Delphi only)

The symbols are replaced with their value. For macros recursive substitution might occur.
The following boolean operators are available:

= <> > <, >= <= AND, NOI, OR |IN

The IN operator tests for presence of a compile-time variable in a set.
The following functions are also available:

TRUE De ned in MacPas mode only, it evaluates to True. In other modes, 1 can be used.
FALSE De ned in MacPas mode only, it evaluatesto False. In other modes, O can be used.

DEFINED(sym) will evaluate to TRUE if a compile time symbol is de ned. In MacPas mode, the
parentheses are optional, i.e.

{$I F DEFI NED(MySym) }

isequivalent to

40

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$| F DEFI NED MySyn}

UNDEFINED sym will evaluate to TRUE if a compile time symbol is not dened, and FALSE
otherwise (mode MacPas only).

OPTION(opt) evaluates to TRUE if a compiler option is set (mode MacPas only). It is equivalent
tothe{$l FOPT } directive.

SIZEOF(passym) Evauatesto the size of apascal type, variable or constant.

DECLARED(passym) Evaluates to TRUE if the pascal symbol is declared at this point in the
sources, or FALSE if it is not yet de ned.

In expressions, the following rules are used for evaluation:

o If all parts of the expression can be evaluated as booleans (with 1 and O representing TRUE and
FALSE, the expression is evaluated using booleans.

o If all parts of the expression can be evaluated as nuumbers, then the expression is evaluated
using numbers.

e Inall other cases, the expression is evaluated using strings.

If the complete expression evaluatesto’” 0’ , then it is considered false and rejected. Otherwiseit is
considered true and accepted. This may have unexpected consequences:

{$if 0}
will evaluate to Fal se and be rgjected, while
{$if 00}

will evaluateto Tr ue.

2.4.2 Usage
The basic usage of compile time expressionsis as follows:
{$if expr}
Conpi | eTheselLi nes;
{$endi f}

If expr evaluatesto TRUE, then Conpi | eTheseLi nes will beincluded in the source.
Likein regular pascal, it ispossibleto use { $ELSE }:

{$if expr}

Conpi | eTheselLi nes;
{ $el se}

Bet t er Conpi | eTheselLi nes;
{$endi f}

If expr evaluatesto Tr ue, Conpi | eTheseLi nes will becompiled. Otherwise, Bet t er Conpi | eTheseli nes
will be compiled.

Additionally, it is possible to use var{ $EL SEIF}

a1

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$IF expr}
...

{$ELSEI F expr}
...

{$ELSEI F expr}
...

{ $ELSE}
...

{ SENDI F}

In addition to the above constructs, which are also supported by Delphi, the above is completely
equivalent to the following construct in MacPas mode:

{$I FC expr}
...
{$ELI FC expr}
{$ELI FC expr}
{ $ELSEC}
{ SENDC}
that is, | FC correspondsto | F, ELI FC correspondsto ELSEI F, ELSEC is equivalent with ELSEC
and ENDC is the equivalent of ENDI F. Additionally, | FEND is an equivalent to ENDI F:
{$| F EXPR}
Conpi | eThi s;
{ SENDI F}

In MacPas mode it is possible to mix these constructs.
The following example shows some of the possibilities:

{$i fdef fpc}

var
y : longint;
{$el se fpc}
var
z . longint;

{$endi f fpc}

var
x : longint;

begi n

{$if (fpc_version=0) and (fpc_release>6) and (fpc_patch>4)}
{$info At least this is version 0.9.5}

{ $el se}

{$fatal Problemwi th version check}

{$endi f}

42

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$define x:=1234}

{$if x=1234}

{$info x=1234}

{ $el se}

{$fatal x should be 1234}
{$endi f}

{$if 12asdf and 1l2asdf}

{$info $if 12asdf and 12asdf is ok}

{ $el se}

{$fatal $if 12asdf and 12asdf rejected}
{$endif}

{$if 0 or 1}

{$info $if 0 or 1 is ok}

{ $el se}

{$fatal $if 0 or 1 rejected}
{$endi f}

{$if 0}

{$fatal $if O accepted}
{ $el se}

{$info $if O is ok}
{$endi f}

{$if 12=12}

{$info $if 12=12 is ok}

{ $el se}

{$fatal $if 12=12 rejected}
{$endif}

{$if 12<>312}

{$info $if 12<>312 is ok}

{ $el se}

{$fatal $if 12<>312 rejected}
{$endif}

{$if 12<=312}

{$info $if 12<=312 is ok}

{ $el se}

{$fatal $if 12<=312 rejected}
{$endif}

{$if 12<312}

{$info $if 12<312 is ok}

{ $el se}

{$fatal $if 12<312 rejected}
{$endi f}

{$if al2=al2}

{$info $if al2=al2 is ok}

{ $el se}

{$fatal $if al2=al2 rejected}

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$endi f}

{$i f al2<=z312}

{$info $if al2<=z312 is ok}

{ $el se}

{$fatal $if al2<=z312 rejected}
{$endi f}

{$if al2<z312}

{$info $if al2<z312 is ok}

{ $el se}

{$fatal $if al2<z312 rejected}
{$endif}

{$if not(0)}

{$info $if not(0) is K}
{$el se}

{$fatal $if not(0) rejected}
{$endi f}

{$I F NOT UNDEFI NED FPC}

/1 Detect FPC stuff when conpiling on MAC

{$SETC TARGET_RT_MAC 68881: = FALSE}

{$SETC TARGET_OS_MAC (NOT UNDEFI NED MACOS)

OR (NOT UNDEFI NED DARW N) }
NOT UNDEFI NED W N32}

(NOT UNDEFI NED UNI X)

AND (UNDEFI NED DARW N) }

{ $SETC TARGET_CS_W N32
{ $SETC TARGET_OS_UNI X

{ $SETC TYPE_EXTENDED = TRUE}
{ $SETC TYPE_LONGLONG = FALSE}
{ $SETC TYPE_BOOL = FALSE}

{ SENDI F}

{$| nfo ***}

{$info * Now have to follow at |east 2 error nessages: *}

{$| nfo ***}

{$if not (0}
{$endi f}

{$if not(<}
{$endi f}

end.

Asyou can see from the example, this construct isn’t useful when used with normal symbols, only if
you use macros, which are explained in section 2.2, page 38. They can be very useful. When trying
this example, you must switch on macro support, with the - Smcommand-line switch.

The following example works only in MacPas mode:

{ $SETC TARGET_OS_MAC : = (NOT UNDEFI NED MACOS) OR (NOT UNDEFI NED DARW N)}

{$SETC DEBUG : = TRUE}

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{ $SETC VERSI ON : = 4}
{ $SETC NEWVODULEUNDERDEVELOPMENT : = (VERSI ON >= 4) OR DEBUGH

{$1 FC NEWWODUL EUNDERDEVEL OPMENT}
{$l FC TARGET_CS_MAC}
... new nac code
{$ELSEC}
new ot her code
{ $ENDC}
{ $ELSEC}
... old code
{ $ENDC}

2.5 Messages

Free Pascal lets you de ne normal, warning and error messages in your code. Messages can be used
to display useful information, such as copyright notices, alist of symbols that your code reacts on
etc.

Warnings can be used if you think some part of your code is till buggy, or if you think that a certain
combination of symbolsisn’t useful.

Error messages can be useful if you need a certain symbol to be de ned, to warn that a certain
variable isn’t de ned, or when the compiler version isn’t suitable for your code.

The compiler treats these messages asif they were generated by the compiler. This meansthat if you
haven’t turned on warning messages, the warning will not be displayed. Errors are always displayed,
and the compiler stopsif 50 errors have occurred. After afatal error, the compiler stops at once.

For messages, the syntax is as follows:
{$Message Message text}

or

{$I nfo Message text}

For notes:

{$Not e Message text}

For warnings:

{$warni ng Warni ng Message text}
For hints:

{$H nt Warni ng Message text}
For errors:

{$Error Error Message text}
Lastly, for fatal errors:

{$Fatal Error Message text}

45

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

or
{$Stop Error Message text}

The difference between $Er r or and $Fat al Er r or or $St op messagesisthat when the compiler
encounters an error, it still continues to compile. With afatal error, the compiler stops.

You cannot use the '}’ character in your message, since this will be treated as the closing brace of
the message.

Asan example, the following piece of code will generate an error when the symbol Requi r edVar
isn’t de ned:

{$i f ndef RequiredVar}
{$Error Requiredvar isn’t defined !}
{$endi f}

But the compiler will continue to compile. It will not, however, generate a unit le or a program
(since an error occurred).

46

Chapter 3
Using Assembly language

Free Pascal supports inserting assembler statements in between Pascal code. The mechanism for
this is the same as under Turbo Pascal. There are, however some substantial differences, as will be
explained in the following sections.

3.1 Intel 80x86 Inline assembler

3.1.1 Intel syntax

Free Pascal supports Intel syntax for the Intel family of 1x86 processorsin its as mblocks.

The Intel syntax in your asmblock is converted to AT& T syntax by the compiler, after which it
is inserted in the compiled source. The supported assembler constructs are a subset of the normal
assembly syntax. In what follows we specify what constructs are not supported in Free Pascal, but
which exist in Turbo Pascal:

e The TBYTE quali er is not supported.

e The &identi er override is not supported.
e The Hl GH operator is not supported.

e The LOWoperator is not supported.

e The OFFSET and SEG operators are not supported. Use LEA and the various Lx x instructions
instead.

e Expressions with constant strings are not allowed.
e Accessto record eldsviaparenthesisisnot allowed

e Typecasts with normal pascal types are not allowed, only recognized assembler typecasts are
allowed. Example:

nov al, byte ptr MyWdrd -- all owed,
nov al, byte(M/Word) -- all owed,
mov al, shortint(MyWrd) -- not all owed.

e Pascal type typecasts on constants are not alowed. Example:

const s= 10; const t = 32767;

47

CHAPTER 3. USING ASSEMBLY LANGUAGE

in Turbo Pascal:
nov al, byte(s) -- usel ess typecast.
nmov al, byte(t) -- syntax error!

In this parser, either of those cases will give out a syntax error.

e Constant references expressions with constants only are not allowed (in all cases they do not
work in protected mode, under LINUX i386). Examples:

nov al,byte ptr ['c’] -- not all owed.
nmov al, byte ptr [100h] -- not all owed.

(Thisisdueto the limitation of Turbo Assembler).
e Brackets within brackets are not allowed

e Expressions with segment overrides fully in brackets are presently not supported, but they can
easily be implemented in BuildReference if requested. Example:

nov al , [ds: bx] -- not all owed
use instead:
nov al, ds: [bx]

e Possible allowed indexing are as follows:
Sreg: [REGFREGF SCALI NG+ - di sp]
SReg: [REGH - di sp]
SReg: [REGF
SReg: [REG+REGH - di sp]
SReg: [REG+REG* SCALI NG
Where Sr eg isoptional and speci es the segment override. Notes:
1. The order of termsisimportant contrary to Turbo Pascal.
2. The Scaling value must be avalue, and not an identi er to a symbol. Examples:

const nyscale = 1;

nov al,byte ptr [esi+ebx*nyscale] -- not allowed.
use:
nmov al, byte ptr [esi+ebx*1]
e Possiblevariable identi er syntax isasfollows: (Id = Variable or typed constant identi er.)
11D
2. [1D0
3. [| D+expr]
4. | D expr]
Possible elds are asfollow:

1. I D. subfield. subfield ...

48

CHAPTER 3. USING ASSEMBLY LANGUAGE

2. [ref].ID subfield.subfield ...
3. [ref].typenane. subfield ...

e Locd abels: Contrary to Turbo Pascal, local 1abels, must at least contain one character after
the local symbol indicator. Example:

@ -- not all owed

use instead, for example:

@: -- all owed

e Contrary to Turbo Pascal local references cannot be used as references, only as displacements.
Example:
| ds si, @yl abel -- not all owed

e Contrary to Turbo Pascal, SEGCS, SEGDS, SEGES and SEGSS segment overrides are presently
not supported. (Thisis a planned addition though).

e Contrary to Turbo Pascal where memory sizes speci ers can be practically anywhere, the Free
Pascal Intel inline assembler requires memory size speci ers to be outside the brackets. Ex-

ample:

nov al,[byte ptr myvar] -- not all owned.
use:

nov al,byte ptr [myvar] -- all owed.

e Base and Index registers must be 32-bit registers. (limitation of the GNU Assembler).

e XLAT isequivaent to XLATB.

e Only Single and Double FPU opcodes are supported.

e Floating point opcodes are currently not supported (except those which involve only oating
point registers).

The Intel inline assembler supports the following macros:

@Result represents the function result return value.

Self represents the object method pointer in methods.

3.1.2 AT&T Syntax

Free Pascal usesthe GNU as assembler to generateitsobject lesfor the Intel 1x86 processors. Since
the GNU assembler uses AT& T assembly syntax, the code you write should use the same syntax. The
differences between AT& T and Intel syntax as used in Turbo Pascal are summarized in the following:

e The opcode names include the size of the operand. In general, one can say that the AT&T
opcode nameisthe Intel opcode name, suf xed witha’ | *,'w or 'b’ for, respectively, longint
(32 bit), word (16 bit) and byte (8 bit) memory or register references. As an example, the Intel
construct ‘mov al bl isequivalent tothe AT&T style’nmovb %l , %l * instruction.

49

CHAPTER 3. USING ASSEMBLY LANGUAGE

e AT&T immediate operands are designated with '$', while Intel syntax doesn’t use apre x for
immediate operands. Thusthe Intel construct 'nov ax, 2’ becomes’'novb $2, %al’in
AT&T syntax.

e AT&T register names are preceded by a’ % sign. They are undelimited in Intel syntax.

e AT&T indicates absolute jump/call operands with '* | Intel syntax doesn’t delimit these ad-
dresses.

e The order of the source and destination operands are switched. AT& T syntax uses’ Sour ce,
Dest ’, while Intel syntax features'Dest, Source’. Thusthe Intel construct 'add eax,
4’ transformsto’addl $4, %ax’ inthe AT&T diaect.

e Immediatelongjumpsarepre xedwiththe’ | ' prex. Thusthelntel’ cal | / j np secti on: of f set’
istransformedto’l cal I /1 j mp $secti on, $of f set’. Similarly thefar returnis’l ret’,
instead of theIntel 'ret far’.

e Memory references are speci ed differently in AT& T and Intel assembly. The Intel indirect
memory reference

Section:[Base + Index*Scale + Ofs]
iswritten in AT& T syntax as.
Section: O f s(Base, | ndex, Scal e)

Where Base and | ndex are optional 32-bit base and index registers, and Scal e is used to
multiply | ndex. It can take the values 1,2,4 and 8. The Sect i on is used to specify an
optional section register for the memory operand.

More information about the AT& T syntax can be found in the as manual, although the following
differences with normal AT& T assembly must be taken into account:

e Only the following directives are presently supported:

byte
.word
Jong
.ascii
.asciz
.globl
e Thefollowing directives are recognized but are not supported:

align
Jcomm

Eventually they will be supported.
o Directives are case sensitive, other identi ers are not case sensitive.
e Contrary to GAS local labels/symbols must start with . L
e Thenot operator’ ! ' isnot supported.
e String expressions in operands are not supported.

e CBTW,CWTL,CWTD and CLTD are not supported, use the normal intel equivalentsinstead.

50

CHAPTER 3. USING ASSEMBLY LANGUAGE

e Constant expressionswhich represent memory references are not allowed even though constant
immediate val ue expressions are supported. Examples:

const nyid = 10;

movl $nyi d, Yeax -- all owed
movl nyid(%si), ¥%eax -- not all owed.

e Whenthe. gl obl directiveisfound, the symbol following it is made public and is immedi-
ately emitted. Therefore label names with this name will be ignored.

e Only Single and Double FPU opcodes are supported.
The AT&T inline assembler supports the following macros:

_ RESULT represents the function result return value.
__SELF represents the object method pointer in methods.

__OLDEBP represents the old base pointer in recusrive routines.

3.2 Motorola 680x0 I nline assembler

Theinline assembler reader for the Motorola 680x0 family of processors, uses the Motorola Assem-
bler syntax (g.v). A few differences do exit:

e Local |abels start with the @ character, such as

@wLabel :

e The XDEF directive in an assembler block will make the symbol available publicly with the
speci ed name (this name is case sensitive)

e The DB, DW DD directives can only be used to declare constants which will be stored in the
code segment.

e The Al i gn directiveis not supported.

e Arithmetic operations on constant expression use the same operands as the intel version (e.g :
AND, XOR...)

e Segment directives are not supported

e Only 68000 and a subset of 68020 opcodes are currently supported

The inline assembler supports the following macros:

@Result represents the function result return value.

Sef represents the object method pointer in methods.

51

CHAPTER 3. USING ASSEMBLY LANGUAGE

3.3 Signaling changed registers

When the compiler uses variables, it sometimes stores them, or the result of some calculations, in
the processor registers. If you insert assembler code in your program that modi es the processor
registers, then this may interfere with the compiler’s idea about the registers. To avoid this problem,
Free Pascal alows you to tell the compiler which registers have changed. The compiler will then
avoid using these registers. Telling the compiler which registers have changed is done by specifying
a set of register names behind an assembly block, as follows:

asm
end ['RL", ... ,"Rn'];

Here R1 to Rn are the names of the registers you modify in your assembly code.
Asan example:

asm

nmovl BP, %eax

nmovl 4(%ax), Yeax
novl %ax, _RESULT
end [' EAX];

This example tells the compiler that the EAX register was modi ed.

52

Chapter 4

Generated code

The Free Pascal compiler relies on the assembler to make object les. It generates just the assembly
language le. In the following two sections, we discuss what is generated when you compile a unit
or a program.

4.1 Units

When you compile a unit, the Free Pascal compiler generates 2 les:

1. A unit description le.

2. An assembly language le.

The assembly language le contains the actual source code for the statements in your unit, and the
necessary memory allocations for any variables you use in your unit. This leis converted by the
assembler to an object le (with extension .0) which can then be linked to other units and your
program, to form an executable.

By default, the assembly le is removed after it has been compiled. Only in the case of the -s
command-line option, the assembly lewill be eft on disk, so the assembler can be called later. You
can disable the erasing of the assembler le with the - a switch.

Theunit le contains all the information the compiler needs to use the unit:
1. Other used units, both in interface and implementation.
2. Types and variables from the interface section of the unit.

3. Function declarations from the interface section of the unit.

4. Some debugging information, when compiled with debugging.

The detailed contents and structure of this le are described in the rst appendix. You can examine a
unit description leusing the ppudump program, which shows the contents of the le.

If you want to distribute a unit without source code, you must provide both the unit description le
and the object le.

You can aso provide a C header le to go with the object le. In that case, your unit can be used by
someone who wishes to write his programs in C. However, you must make this header le yourself
since the Free Pascal compiler doesn’t make one for you.

53

CHAPTER 4. GENERATED CODE

4.2 Programs

When you compile a program, the compiler produces again 2 les:

1. Anassembly language le containing the statements of your program, and memory alocations
for all used variables.

2. A linker response le. This le contains alist of object lesthe linker must link together.

Thelink response leis, by default, removed from the disk. Only when you specify the - s command-
line option or when linking fails, then the leisleft onthedisk. Itisnamed link.res.

The assembly language le is converted to an object |e by the assembler, and then linked together
with the rest of the units and a program header, to form your nal program.

The program header leisasmall assembly program which providesthe entry point for the program.
This is where the execution of your program starts, so it depends on the operating system, because
operating systems pass parameters to executables in wildly different ways.

It's name is prt0.0, and the source leresidesin prt0.as or some variant of this name. It usually
resided where the system unit source for your system resides. It's main function is to save the
environment and command-line arguments and set up the stack. Then it calls the main program.

Chapter 5

Intel MM X support

5.1 What isit about?

Free Pascal supports the new MM X (Multi-Media extensions) instructions of Intel processors. The
idea of MMX is to process multiple data with one instruction, for example the processor can add
simultaneously 4 words. To implement this ef ciently, the Pascal language needs to be extended. So
Free Pascal allowsto add for exampletwoar ray[0. . 3] of word, if MMX support is switched
on. The operation is done by the MMX unit and allows people without assembler knowledge to take
advantage of the MM X extensions.

Hereisan example:

uses
MM { include sone predefined data types }

const
{ tmmxword = array[O0..3] of word;, declared by unit MW }
wl : tnmxword (111, 123, 432, 4356);
w2 @ tmmxword (4213, 63456, 756, 4) ;

var
w3 : tnmmxword;
I : longint;

begi n
if is_mMmx _cpu then { is_mx _cpu is exported fromunit mmx }
begi n
{ Srmx +} { turn mx on }
W3: =wl+w2;
{ $rmx- }
end
el se
begi n
for i:=0 to 3 do
W3[0] o=wa[i]+w2[i];
end;
end.

55

CHAPTER 5. INTEL MMX SUPPORT

5.2 Saturation support

One important point of MMX is the support of saturated operations. |f a operation would cause
an over ow, the value stays at the highest or lowest possible value for the data type: If you use
byte values you get normally 250+12=6. Thisis very annoying when doing color manipulations or
changing audio samples, when you have to do aword add and check if the value is greater than 255.
The solution is saturation: 250+12 gives 255. Saturated operations are supported by the MMX unit. If
you want to use them, you have simple turn the switch saturation on: $sat ur ati on+

Hereisan example:

Pr ogr am Sat ur at i onDeno;

{

exanpl e for saturation, scales data (for exanple audio)
with 1.5 with rounding to negative infinity

}
uses nmx;
var
audi o1 : tmmxwor d;
i: smallint;
const
hel pdatal : trmmxword = ($c000, $c000, $c000, $c000) ;
hel pdata2 : tmmxword = ($8000, $8000, $8000, $8000) ;
begi n
{ audi ol contains four 16 bit audio sanples }
{ $rmx+}

{ convert it to $8000 is defined as zero, multiply data with 0.75 }
audi 01: =(audi ol+hel pdat a2) *(hel pdat al);
{$sat uration+}
{ avoid overflows (all values>$7fff becomes $ffff) }
audi ol: =(audi ol+hel pdat a2) - hel pdat a2;
{$saturation-}
{ now nupltily with 2 and change to integer }
for i:=0 to 3 do
audi 01[i] := audiol[i] shl 1;
audi ol: =audi ol1- hel pdat a2;
{ $rmx- }
end.

5.3 Restrictionsof MM X support

In the beginning of 1997 the MM X instructions were introduced in the Pentium processors, so mul-
titasking systems wouldn't save the newly introduced MM X registers. To work around that problem,
Intel mapped the MM X registers to the FPU register.

The conseguence is that you can't mix MMX and oating point operations. After using MMX
operations and before using oating point operations, you have to call the routine EMVES of the MVIX
unit. This routine restores the FPU registers.

Careful: The compiler doesn’'t warn if you mix oating point and MM X operations, so be careful.
The MMX instructions are optimized for multi media (what else?). So it isn't possible to perform

56

CHAPTER 5. INTEL MMX SUPPORT

each operation, some operations give atype mismatch, see section 5.4 for the supported MM X oper-
ations

An important restriction is that MM X operations aren’t range or over ow checked, even when you
turn range and over ow checking on. Thisis due to the nature of MM X operations.

The MUX unit must always be used when doing MM X operations because the exit code of this unit
clearsthe MM X unit. If it wouldn’t do that, other program will crash. A consequence of thisis that
you can’'t use MM X operationsin the exit code of your units or programs, since they would interfere
with the exit code of the MVIX unit. The compiler can’t check this, so you are responsible for this!

54 Supported MM X operations

The following operations are supported in the compiler when MM X extensions are enabled:
e addition (+)
e subtraction (-)
e multiplication(*)
e logica exclusive or (xor)
e logical and (and)
e logica or (or)

e signchange(-)

5.5 Optimizing MM X support
Here are some helpful hints to get optimal performance:

e The EMVE call takes alot of time, so try to seperate oating point and MM X operations.

e UseMMX only inlow level routines because the compiler saves all used MM X registers when
calling a subroutine.

e The NOT-operator isn’t supported natively by MM X, so the compiler hasto generate aworkaround

and this operation isinef cient.

e Simple assignements of oating point numbers don't access oating point registers, so you
need no call to the EMVES procedure. Only when doing arithmetic, you need to call the EMVB
procedure.

57

Chapter 6

Codeissues

This chapter gives detailed information on the generated code by Free Pascal. It can be useful to
write external object leswhich will be linked to Free Pascal created code blocks.

6.1 Register Conventions

The compiler has different register conventions, depending on the target processor used; some of the
registers have speci ¢ uses during the code generation. The following section describes the generic
names of the registers on a platform per platform basis. It aso indicates what registers are used as
scratch registers, and which can be freely used in assembler blocks.

6.1.1 accumulator register

The accumulator register is at least a 32-bit integer hardware register, and is used to return results of
function calls which return integral values.

6.1.2 accumulator 64-bit register

The accumul ator 64-bit register isused in 32-hit environments and is de ned asthe group of registers
which will be used when returning 64-bit integral resultsin function calls. Thisisaregister pair.

6.1.3 oat result register
Thisregister is used for returning oating point values from functions.

6.1.4 self register

The self register contains a pointer to the actual object or class. Thisregister gives access to the data
of the object or class, and the VMT pointer of that object or class.

6.1.5 frame pointer register

The frame pointer register is used to access parameters in subroutines, as well as to access local
variables. References to the pushed prameters and local variables are constructed using the frame

58

CHAPTER 6. CODE ISSUES

pointer. L.

6.1.6 stack pointer register

The stack pointer is used to give the address of the stack area, where the local variables and parame-
ters to subroutines are stored.

6.1.7 scratch registers

Scratch registers are those which can be used in assembler blocks, or in external object les without
requiring any saving before usage.

6.1.8 Processor mapping of registers

Thisindicates what registers are used for what purposes on each of the processors supported by Free
Pascal. It also indicates which registers can be used as scratch registers.

Intel 80x86 version

Table 6.1: Intel 80x86 Register table

Generic register name CPU Register name
accumulator EAX

accumulator (64-bit) high/low EDX:EAX

oat result FP(0)

self ESI

frame pointer EBP

stack pointer ESP

scratch regs. N/A

M otorola 680x0 ver sion

Table 6.2: Motorola 680x0 Register table

Generic register name CPU Register name
accumul ator D0?

accumulator (64-bit) high/low DO0:D1

oat result FPO 3

self A5

frame pointer A6

stack pointer A7

scratch regs. DO, D1, A0, A1, FPO, FP1

1The frame pointer is not available on all platforms

2For compatibility with some C compilers, when the function result is a pointer and is declared with the cdecl convention,
the result is also stored in the AO register

30n simulated FPU’s the result is returned in DO

59

CHAPTER 6. CODE ISSUES

6.2 Namemangling

Contrary to most C compilers and assemblers, all labels generated to pascal variables and routines
have mangled names®. Thisis done so that the compiler can do stronger type checking when parsing
the pascal code. It also permits function and procedure overloading.

6.2.1 Mangled names for data blocks
The rules for mangled names for variables and typed constants are as follows:

e All variable names are converted to upper case

e Variablesin the main program or private to aunit have an _ prepended to their names

Typed constants in the main program have an TC___ prepended to their names

Public variables in a unit have their unit name prepended to them : U_UNITNAME_
Public and private typed constantsin aunit have their unit name prepended tothem :TC__ UNITNAMESS

Currently, in Free Pascal v1.0, if you declare avariable in unit namet uni t , with the name _a, and
you declare the same variable with name a in unit name t uni t _, you will get the same mangled
name. Thisisalimitation of the compiler which will be xed in release v1.1.

Examples

unit testvars;

i nterface
const

publ i ctypedconst : integer = O;
var

publicvar : integer

i mpl enent ati on

const

privatetypedconst : integer = 1;
var

privatevar : integer;

end.

Will give the following assembler output under GNU as:

.file "testvars. pas"
.text

.dat a

4This can be avoided by using the al i as or cdecl modi ers

60

CHAPTER 6. CODE ISSUES

[6] publictypedconst : integer = O;
.globl TC__TESTVARS$$_PUBLI CTYPEDCONST
TC__TESTVARS$$_PUBLI CTYPEDCONST:

.short O

[12] privatetypedconst : integer = 1;
TC__TESTVARS$$ PRI VATETYPEDCONST:
.short 1

. bss

[8] publicvar : integer;

.comm U _TESTVARS PUBLI CVAR, 2

[14] privatevar : integer;

. comm _PRI VATEVAR, 2

6.2.2 Mangled names for code blocks

The rules for mangled names for routines are as follows:

¢ All routine names are converted to upper case.
e Routinesin aunit have their unit name prepended to them : _UNITNAMES$$
¢ All Routinesin the main program have a__ prepended to them.

e All parametersin aroutine are mangled using the type of the parameter (in uppercase) prepended
by the $ character. Thisisdonein left to right order for each parameter of the routine.

e Objectsand classes use special mangling : The classtype or object typeisgiven in the mangled
name; The mangled nameisasfollows. $$ TYPEDECL_$$ optionally preceded by mangled
name of the unit and nishing with the method name.

The following constructs

unit testman;

interface

type
nyobj ect = obj ect
constructor init;
procedure nymet hod;
end;

i mpl ement ati on
constructor myobject.init;
begi n
end;
procedure nyobj ect. nynet hod;
begi n
end;
function nyfunc: pointer;

begi n

61

CHAPTER 6. CODE ISSUES

end;

procedure nyprocedure(var x: integer; y: longint; z : pchar);
begi n
end;

end.

will result in the following assembler e for the Intel 80x86 target:
.file "testmn. pas"

.text

.balign 16

.gl obl _TESTMAN$S_$$_MYOBJECT_$$_INT
TESTMANSS$$_MYOBJECT_$$_INIT:
pushl %bp

movl %esp, Y%ebp

subl $4, %esp

novl $0, %ed

cal | FPC HELP CONSTRUCTOR

jz .L5

jmp . L7

. L5:

novl 12(%ebp), Y%esi

movl $0, %ed

call FPC HELP_FAIL

.L7:

novl %esi, Y%eax

testl %esi, %esi

| eave

ret $8

.balign 16

. gl obl _TESTMAN$S_$$_MYOBJECT_$$_MYMETHCD
TESTMANS$$_MYOBJECT_$$_MYMETHOD:
pushl %bp

novl %esp, Y%ebp

| eave

ret $4

.balign 16

TESTVANS$$ MYFUNC

pushl %bp

nmovl %esp, Y%ebp

subl $4, %esp

movl - 4(%bp), Y%eax

| eave

ret

.balign 16
_TESTVANS$$_MYPROCEDURES| NTEGERSLONG NT$PCHAR
pushl %bp

novl %esp, %ebp

| eave

ret $12

62

CHAPTER 6. CODE ISSUES

6.2.3 Modifying the mangled names

To make the symbols externally accessible, it is possible to give nicknames to mangled names, or to
change the mangled name directly. Two modi ers can be used:

cdecl: A function that hasacdecl modi er, will be used with C calling conventions, that is, the
caller clears the stack. Also the mangled name will be the name exactly as it is declared.
cdecl ispart of the function declaration, and hence must be present both in the interface and
implementation section of a unit.

alias. Theal i as modi er can be used to assign a second assembler label to your function. This
label has the same name as the alias name you declared. This doesn’t modify the calling
conventions of the function. In other words, theal i as modi er alows you to specify another
name (a nickname) for your function or procedure.

The prototype for an aliased function or procedure is as follows:
Procedure AliasedProc; alias : 'AliasNane’;

The procedure Al i asedPr oc will also be known as Al i asName. Take care, the name you
specify is case sensitive (as C is).

Furthermore, theexpor t s section of alibrary isalso used to declare the names that will be exported
by the shared library. The namesin the exports section are case-sensitive (while the actual declaration
of theroutineis not). For more information on the creating shared libraries, chapter 12, page 108.

6.3 Calling mechanism

Procedures and Functions are called with their parameters on the stack. Contrary to Turbo Pascal, all
parameters are pushed on the stack, and they are pushed right to left, instead of left to right for Turbo
Pascal. Thisis especialy important if you have some assembly subroutines in Turbo Pascal which
you would like to translate to Free Pascal.

Function results are returned in the accumulator, if they t in the register. Methods calls (from
either objects or clases) have an additional invisible parameter which issel f . This parameter isthe
leftmost parameter within a method call (it is therefore the last parameter passed to the method).

When the procedure or function exits, it clears the stack.

Other calling methods are available for linking with external object les and libraries, these are
summarized intable (6.3). The rst column liststhe modi er you specify for aprocedure declaration.
The second one lists the order the paramaters are pushed on the stack. The third column speci es
who is responsible for cleaning the stack: the caller or the called function. The alignment column
indicates the alignment of the parameters sent to the stack area. Finally, the fth column indicates if
any registers are saved in the entry code of the subroutine.

More about this can be found in chapter 7, page 68 on linking. Information on GCC registers saved,
GCC stack alignment and general stack alignment on an operating system basis can be found in
Appendix I. Ther egi st er modi er is currently not supported, and maps to the default calling
convention.

Furthermore, the saver egi st er s modi er can be used with any of the calling mechanism spec-

i ers. When saver egi st er s isused, all registers will be saved on entry to the routine, and will
be restored upon exit. Of coursg, if the routine is afunction, and it normally returnsitsretun valuein
aregister, that register will not be saved. Also, if the self register isused, it will also neither be saved
nor restored.

63

CHAPTER 6. CODE ISSUES

Table 6.3: Calling mechanismsin Free Pascal

Modi er Pushing order Stack cleaned by alignment registers saved
<none> Right-to-left ~ Function default None

cdecl Right-to-left ~ Caller GCC dignment GCC registers
interrupt Right-to-left ~ Function default all registers
pascal Left-to-right ~ Function default None

safecall Right-to-left Function default GCC registers
stdcall Right-to-left ~ Function GCCaignment GCC registers
popstack Right-to-left ~ Caller default None

register Left-to-right Caler default None

6.4 Nested procedure and functions

When aroutine is declared within the scope of a procedure or function, it is said to be nested. In this
case, an additional invisible parameter is passed to the nested routine. This additional parameter is
the frame pointer address of the parent routine. This permits the nested routine to access the local
variables and parameters of the calling routine.

The resulting stack frame after the entry code of a ssmple nested procedure has been executed is
shown in table (6.4).

Table 6.4: Stack frame when calling a nested procedure (32-bit processors)

Offset from frame pointer What is stored

+X parameters

+8 Frame pointer of parent routine
+4 Return address

+0 Saved frame pointer

6.5 Constructor and Destructor calls

Constructor and destructors have special invisible parameters which are passed to them. Theseinvis-
ible parameters are used internally to instantiate the objects and classes.

6.5.1 objects

The actual invisible declaration of an object constructor is asfollows:
constructor init(_vnt : pointer; _self : pointer ...);

Where vt isapointer to the virtual method table for this object. Thisvalueisnil if aconstructor
is called within the object instance (such as calling an ihnerited constructor).

_sel f iseither nil if the instance must be allocated dynamically (object is declared as pointer), or
the address of the object instance if the object is declared as a normal object (stored in the data area)
or if the object instance has already been allocated.

The allocated instance (if allocated vianew) (sel f) isreturned in the accumulator.

64

CHAPTER 6. CODE ISSUES

The declaration of adestructor is as follows:
destructor done(_vnt : pointer; _self : pointer ...);

Where _vnt isapointer to the virtual method table for this object. Thisvalueisnil if adestructor is
called within the object instance (such as calling an ihnerited constructor), or if the object instanceis
avariable and not a pointer.

_sel f isthe address of the object instance.

6.5.2 classes
The actual invisible declaration of a class constructoir is as follows:

constructor init(_vnt: pointer; flag : longint; ..);

_vnt iseither nil if called from theinstance or if calling an inherited constructor, otherwise it points
to the address of the virtual method table.

Wheref | ag iszeroif the constructor is called within the object instance or with an instance quali er
otherwise this agis set to one.

The alocated instance (sel f) isreturned in the accumulator.
The declaration of adestructor is asfollows:

destructor done(_self : pointer; flag : longint ...);

_sel f isthe address of the object instance.

f | ag iszero if the destructor is called within the object instance or with an instance quali er other-
wisethis agis set to one.

6.6 Entry and exit code

Each Pascal procedure and function begins and ends with standard epilogue and prologue code.

6.6.1 Intel 80x86 standard routine prologue / epilogue
Standard entry code for procedures and functionsis as follows on the 80x86 architecture:

pushl Y%ebp
novl Y%esp, Yebp

The generated exit sequence for procedure and functions looks as follows:

| eave
ret $xx

Where xx isthe total size of the pushed parameters.
To have more information on function return values take alook at section 6.1, page 58.

65

CHAPTER 6. CODE ISSUES

6.6.2 Motorola 680x0 standard routine prologue / epilogue
Standard entry code for procedures and functionsis as follows on the 680x0 architecture:

move. |l a6, -(sp)
nove.l sp, a6

The generated exit sequence for procedure and functions looks as follows (in the default processor
mode):

unl k a6
rtd H#XX

Where xx isthetotal size of the pushed parameters.
To have more information on function return values take a look at section 6.1, page 58.

6.7 Parameter passing

When afunction or procedure is called, then the following is done by the compiler:

1. If there are any parameters to be passed to the procedure, they are pushed from right to left on
the stack.

2. If afunction is called that returns a variable of type St ri ng, Set, Recor d, Obj ect or
Ar r ay, then an address to store the function result in, is pushed on the stack.

3. If the called procedure or function is an object method, then the pointer to sel f ispushed on
the stack.

4. If the procedure or function is nested in another function or procedure, then the frame pointer
of the parent procedure is pushed on the stack.

5. Thereturn addressis pushed on the stack (This is done automatically by the instruction which
calls the subroutine).

The resulting stack frame upon entering looks as in table (6.5).

Table 6.5: Stack frame when calling a procedure (32-bit model)

Offset What is stored Optiona ?
+X parameters Yes
+12 function result Yes
+8 self Yes
+4 Return address No
+0 Frame pointer of parent procedure Yes

6.7.1 Parameter alignment

Each parameter passed to aroutineis guaranteed to decrement the stack pointer by acertain minimum
amount. This behavior varies from one operating system to another. For example, passing a byte
as avalue parameter to a routine could either decrement the stack pointer by 1, 2, 4 or even 8 bytes

66

CHAPTER 6. CODE ISSUES

depending on the target operating system and processor. The minimal default stack pointer decrement
valueisgiven in Appendix I.

For example, on FREEBSD, al parameters passed to aroutine guarantee aminimal stack decrease of
four bytes per parameter, even if the parameter actually takes less then 4 bytes to store on the stack
(such as passing a byte value parameter to the stack).

6.8 Processor limitations

Certain processors have limitations on the size of the parameters and local variablesin routines. This
is shown in table (6.6).

Table 6.6: Maximum limits for processors

Processor Parameters Local variables
Intel 80x86 (all) 64K No limit
Motorola 68020 (default) 32K No limit

M otorola 68000 32K 32K

Furthermore, the m68k compiler, in 68000 mode, limits the size of data elements to 32K (arrays,
records, objects, etc.). This restriction does not exist in 68020 maode.

67

Chapter 7
Linking issues

When you only use Pascal code, and Pascal units, then you will not see much of the part that the
linker plays in creating your executable. The linker is only called when you compile a program.
When compiling units, the linker isn’t invoked.

However, there aretimesthat linking to C libraries, or to external object les created by other compil-
ers may be necessary. The Free Pascal compiler can generate calls to a C function, and can generate
functions that can be called from C (exported functions).

7.1 Using external code and variables

In general, there are 3 things you must do to use afunction that residesin an external library or object
le:

1. You must make a pascal declaration of the function or procedure you want to use.
2. You must declare the correct calling convention to use.

3. You must tell the compiler where the function resides, i.e. in what object e or what library,
so the compiler can link the necessary code in.

The same holds for variables. To access a variable that resides in an external object le, you must
declareit, and tell the compiler whereto nd it. The following sections attempt to explain how to do
this.

7.1.1 Declaring external functions or procedures

The rst step in using external code blocks is declaring the function you want to use. Free Pascal
supports Delphi syntax, i.e. you must use the ext er nal directive. The ext er nal directive
replaces, in effect, the code block of the function.

The external directive doesn’t specify a calling convention; it just tells the compiler that the code for
a procedure or function resides in an external code block. A calling convention modi er should be
declared if the external code blocks does not have the same calling conventions as Free Pascal. For
more information on the calling conventions section 6.3, page 63.

There exist four variants of the external directive:

1. A simple external declaration:

68

CHAPTER 7. LINKING ISSUES

Procedure ProcNane (Args : TPRocArgs); external;

The ext er nal directive tells the compiler that the function resides in an external block of
code. You can usethistogether withthe{ $L} or { $Li nkLi b} directivestolink to afunction
or procedurein alibrary or external object le. Object les are looked for in the object search
path (set by - Fo) and libraries are searched for in the linker path (set by - FI).

2. You can givethe ext er nal directive alibrary name as an argument:
Procedure ProcName (Args : TPRocArgs); external 'Nane’;

Thistellsthe compiler that the procedure residesin alibrary with name’ Nare’ . Thismethod
is equivalent to the following:

Procedure ProcNane (Args : TPRocArgs); external;
{$Li nkLi b ’ Nane’ }

3. Theext er nal can aso be used with two arguments:

Procedure ProcNane (Args : TPRocArgs); external ' Name’
name ' O her ProcNange’ ;

This has the same meaning as the previous declaration, only the compiler will use the name
" O her ProcNane’ when linking to the library. This can be used to give different namesto
procedures and functions in an external library. The name of the routine is case-sensitive and
should match exactly the name of the routine in the object le.

This method is equivalent to the following code:

Procedure O herProcName (Args : TProcArgs); external;
{$Li nkLi b * Name’ }

Procedure ProcNane (Args : TPRocArgs);

begin
Qt her ProcNane (Args);
end;

4. Lastly, onder WiNDOWS and 0s/2, thereis afourth possibility to specify an external function:
In .DLL les, functions aso have a unique number (their index). It is possible to refer to these
fuctions using their index:

Procedure ProcNane (Args : TPRocArgs); external ’'Nanme' |ndex Sorel ndex;

This tells the compiler that the procedure Pr oc Nane resides in a dynamic link library, with
index Somelndex.

Remark: Note that thisis ONLY available under WINDOWS and 0S/2.

7.1.2 Declaring external variables

Some libaries or code blocks have variables which they export. You can access these variables much
in the same way as external functions. To access an external variable, you declareit asfollows:

Var
MyVar : MyType; external nane ’'varnane’;

69

CHAPTER 7. LINKING ISSUES

The effect of this declaration is twofold:

1. No spaceisallocated for this variable.

2. The name of the variable used in the assembler code is var nane. Thisis a case sensitive
name, so you must be careful.

The variable will be accessible with it's declared name, i.e. MyVar in this case.
A second possibility is the declaration:

Var
varnane : MType; cvar; external;

The effect of this declaration istwofold as in the previous case:

1. Theext er nal modi er ensuresthat no spaceis allocated for this variable.

2. Thecvar modi er tellsthe compiler that the name of the variable used in the assembler code
is exactly as speci ed in the declaration. Thisis a case sensitive name, so you must be careful.

The rst possibility allows you to change the name of the external variable for internal use.
Asan example, let’slook at the following C le (in extvar.c):

/*

Decl are a variable, allocate storage

*/

int extvar = 12;

And the following program (in extdemo.pp):
Pr ogr am Ext Denp;
{$L extvar. o}
Var { Case sensitive declaration !! }
extvar : longint; cvar;external;
I : longint; external nane ’'extvar’;
begi n
{ Extvar can be used case insensitive !! }
Witeln (’Variable ' extvar'’ has value: ', ExtVar);
Witeln ('Variable ' 1"’ has value: ’,i);
end.
Compiling the C le, and the pascal program:

gcc -c -0 extvar.o extvar.c
ppc386 -Sv extdenop

Will produce a program extdemo which will print

Vari abl e "extvar’ has value: 12
Variable "1’ has val ue: 12

on your screen.

70

CHAPTER 7. LINKING ISSUES

7.1.3 Declaring the calling convention modi er

To make sure that all parameters are correctly passed to the external routines, you should declare it
with the correct calling convention modi er. When linking with code blocks compiled with standard
C compilers (such as GCC), the cdecl modi er should be used so as to indicate that the external
routine uses C type calling conventions. For more information on the supported calling conventions,
section 6.3, page 63.

Asmight expected, external variable declarations do not require any calling convention modi er.

7.1.4 Declaring the external object code
Linking to an object le

Having declared the external function or variable that residesin an object le, you can use it asif it
was de ned in your own program or unit. To produce an executable, you must still link the object
lein. Thiscan bedonewiththe {$L fil e. o} directive.

This will cause the linker to link in the object le le.o. On most systems, this lename is case
sensitive. The object leis rst searched in the current directory, and then the directories speci ed
by the - Fo command line.

You cannot specify librariesin thisway, it isfor object lesonly.

Here we present an example. Consider that you have some assembly routine which usesthe C calling
convention that calculates the nth Fibonacci number:

.text
.align 4
. gl obl Fi bonacci
.type Fi bonacci, @unction
Fi bonacci :
pushl %bp
nmovl %esp, Y%ebp
nmovl 8(%ebp), Yedx
xorl %ecx, %ecx
xorl % ax, Y%eax
movl $1, %ebx

i ncl %edx

| oop:
decl %edx
j e endl oop
movl %ecx, Yeax
addl %ebx, %eax
movl %ebx, %ecx
movl %eax, Y%ebx
jmp | oop

endl oop:
nmovl %ebp, Y%esp
popl %ebp

ret
Then you can call this function with the following Pascal Program:
Pr ogr am Fi bonacci Denv;

var i : longint;

71

CHAPTER 7. LINKING ISSUES

Function Fi bonacci (L : longint):longint;cdecl;external;
{$L fib. o}
begi n
For 1:=1 to 40 do
witeln ("Fib(’,i,”) : ', Fibonacci (i));
end.

With just two commands, this can be made into a program:

as -o fib.o fib.s
ppc386 fibo. pp

This example supposes that you have your assembler routine in b.s, and your Pascal program in
bo.pp .

Linkingtoalibrary

To link your program to alibrary, the procedure depends on how you declared the external procedure.
In case you used the following syntax to declare your procedure:

Procedure ProcNane (Args : TPRocArgs); external 'Nane’;
You don’t need to take additional steps to link your le in, the compiler will do all that is needed

for you. On WinDows it will link to name.dll, on LINUX and most UNIX’es your program will be
linked to library libname, which can be a static or dynamic library.

In case you used
Procedure ProcNane (Args : TPRocArgs); external;
You still need to explicity link to the library. This can be donein 2 ways.

1. You can tell the compiler in the source le what library to link to using the {$Li nkLi b
" Nane’ } directive:

{$Li nkLi b ' gpni}
Thiswill link to the gpm library. On UNIX systems (such as LINUX), you must not specify the

extension or ’'lib’ pre x of the library. The compiler takes care of that. On other systems (such
as WINDOWS, you need to specify the full name.

2. You can aso tell the compiler on the command-lineto link in alibrary: The - k option can be
used for that. For example

ppc386 -k’'-1gpm nyprog. pp
Is equivalent to the above method, and tells the linker to link to the gpm library.

As an example; consider the following program:

72

CHAPTER 7. LINKING ISSUES

program printl ength;
{$linklib c} { Case sensitive }

{ Declaration for the standard C function strlen }

Function strlen (P : pchar) : longint; cdecl;external;
begi n

Witeln (strlen(’ Progranming is easy !'));
end.

This program can be compiled with:
ppc386 prlen. pp

Supposing, of course, that the program source resides in prlen.pp.

To use functions in C that have a variable number of arguments, you must compile your unit or
program in obj f pc mode or Del phi mode, and usethe Array of const argument, asin the
following example:

program t est aocc;

{$node obj f pc}

Const
P : Pchar
= 'exanpl e’ ;
F : Pchar

"This % uses printf to print nunbers (%) and strings.’ #10;

procedure printf(fm pchar;args: array of const);cdecl;external 'c’;

begi n

printf(F,[P,123]);
end.

The output of this program looks like this:

Thi s exanple uses printf to print numbers (123) and strings.

7.2 Makinglibraries

Free Pascal supports making shared or static libraries in a straightforward and easy manner. If you

want to make static libraries for other Free Pascal programmers, you just need to provide acommand
line switch. To make shared libraries, refer to the chapter 12, page 108. If you want C programmers
to be able to use your code aswell, you will need to adapt your code alittle. This processisdescribed
rst.

7.2.1 Exporting functions
When exporting functions from alibrary, there are 2 things you must take in account:

73

CHAPTER 7. LINKING ISSUES

1. Calling conventions.

2. Naming scheme.

The calling conventions are controlled by themodi ers cdecl , popst ack, pascal ,saf ecal |,
stdcal | andregi st er. See section 6.3, page 63 for more information on the different kinds of
calling scheme.

The naming conventions can be controlled by 2 modi ersin the case of static libraries:

e cdecl

e alias

For more information on how these different modi ers change the name mangling of the routine
section 6.2, page 60.

Remark: If you use in your unit functions that are in other units, or system functions, then the C program will
need to link in the object les from these units too.

7.2.2 Exporting variables

Similarly as when you export functions, you can export variables. When exportig variables, one
should only consider the names of the variables. To declare a variable that should be used by a C
program, one declares it with thecvar modi er:

Var MyVar : MTpe; cvar;

This will tell the compiler that the assembler name of the variable (the one which is used by C
programs) should be exactly as speci ed in the declaration, i.e., case sensitive.

It is not allowed to declare multiple variables as cvar in one statement, i.e. the following code will

produce an error:

var Z1,Z2 : |ongint;cvar;

7.2.3 Compiling libraries

Once you have your (adapted) code, with exported and other functions, you can compile your unit,
and tell the compiler to make it into a library. The compiler will ssmply compile your unit, and
perform the necessary stepsto transformitintoast at i ¢ or shar ed (dynam c) library.

You can do this asfollows, for adynamic library:
ppc386 -CD nyunit
On UNIX systems, such as LINUX, thiswill leave you with a le libmyunit.so. On WiNDOwWS and

0s/2, this will leave you with myunit.dll. An easier way to create shared libraries is to use the
I'i brary keyword. For more information on creating shared libraries, chapter 12, page 108.

If you want a static library, you can do
ppc386 -CS nyunit

Thiswill leave you with libmyunit.a and a le myunit.ppu. The myunit.ppu is the unit le needed
by the Free Pascal compiler.

74

CHAPTER 7. LINKING ISSUES

Theresulting les are then libraries. To make static libraries, you need the ranlib or ar program on
your system. Itis standard on most UNIX systems, and is provided with the gcc compiler under DOS.
For the dos distribution, a copy of ar isincluded in the le gnuutils.zip.

BEWARE: This command doesn’t include anything but the current unit in the library. Other units are
left out, so if you use code from other units, you must deploy them together with your library.

7.2.4 Unit searching strategy
When you compile a unit, the compiler will by default alwayslook for unit les.

To be able to differentiate between units that have been compiled as static or dynamic libraries, there
are 2 switches:

-XD: Thiswill de nethe symbol FPC_LI NK_DYNAM C
-XS: Thiswill denethe symbol FPC LI NK_STATI C

De nition of one symbol will automatically unde ne the other.

These two switches can be used in conjunction with the con guration le fpc.cfg. The existence of
one of these symbols can be used to decide which unit search path to set. For example, on LINUX:

Set unit paths

#| FDEF FPC_LI NK_STATI C
-Up/usr/lib/fpc/linuxunits/staticunits
#ENDI F

#| FDEF FPC_LI NK_DYNAM C
-Up/usr/lib/fpc/linuxunits/sharedunits
#ENDI F

With such acon guration le, the compiler will look for it's unitsin different directories, depending
on whether - XD or - XS is used.

7.3 Using smart linking

You can compile your units using smart linking. When you use smartlinking, the compiler creates a
series of code blocks that are as small as possible, i.e. a code block will contain only the code for
one procedure or function.

When you compile a program that uses a smart-linked unit, the compiler will only link in the code
that you actually need, and will leave out all other code. Thiswill result in asmaller binary, whichis
loaded in memory faster, thus speeding up execution.

To enable smartlinking, one can give the smartlink option on the command line: - Cx, or one can put
the { $SMARTLI NK ON} directive in the unit le:

Unit Testunit

{ SMARTLI NK ON}
I nterface

Smartlinking will slow down the compilation process, especialy for large units.

75

CHAPTER 7. LINKING ISSUES

When a unit foo.pp is smartlinked, the name of the code leis changed to libfoo.a.

Technically speaking, the compiler makes small assembler les for each procedure and function in
the unit, aswell asfor all global de ned variables (whether they’re in the interface section or not). It
then assembles all these small les, and uses ar to collect the resulting object lesin one archive.

Smartlinking and the creation of shared (or dynamic) libraries are mutualy exclusive, that is, if you
turn on smartlinking, then the creation of shared librariesisturned of. The creation of static libraries
is still possible. The reason for this is that it has little sense in making a smartlinked dynamical
library. The whole shared library is loaded into memory anyway by the dynamic linker (or the
operating system), so there would be no gain in size by making it smartlinked.

76

Chapter 8

Memory issues

8.1 Thememory model.

The Free Pascal compiler issues 32-bit or 64-bit code. This has several consequences:

e You need a 32-hit or 64-hit processor to run the generated code. The compiler functions on a
286 when you compile it using Turbo Pascal, but the generated programs cannot be assembled
or executed.

e You don't need to bother with segment selectors. Memory can be addressed using a single
32-bit (on 32-bit processors) or 64-hit (on 64-bit processors with 64-bit addressing) pointer.
The amount of memory is limited only by the available amount of (virtual) memory on your
machine.

e The structures you de ne are unlimited in size. Arrays can be as long as you want. You can
request memory blocks from any size.

Thefact that 16-bit code is no longer used, means that some of the older Turbo Pascal constructs and
functions are obsolete. The following isalist of functions which shouldn’t be used anymore:

Seg() : Returned the segment of a memory address. Since segments have no more meaning, zero is
returned in the Free Pascal run-time library implementation of Seg.

Ofs() : Returned the offset of a memory address. Since segments have no more meaning, the com-
plete address is returned in the Free Pascal implementation of this function. This has as a
consequence that the return typeis| ongi nt ori nt 64 instead of Wor d.

Cseg(), Dseg() : Returned, respectively, the code and data segments of your program. This returns
zero in the Free Pascal implementation of the system unit, since both code and data are in the
same memory space.

Ptr : Accepted a segment and offset from an address, and would return a pointer to this address.
This has been changed in the run-time library, it now simply returns the offset.

memw and mem : These arrays gave access to the DOS memory. Free Pascal supports them on the
go32v2 platform, they are mapped into DOsS memory space. You need the go32 unit for this.
On other platforms, they are not supported

You shouldn’t use these functions, since they are very non-portable, they’re speci c to Dos and the
80x86 processor. The Free Pascal compiler is designed to be portable to other platforms, so you
should keep your code as portable as possible, and not system speci ¢. That is, unless you're writing

some driver units, of course.

7

CHAPTER 8. MEMORY ISSUES

8.2 Dataformats

This section gives information on the storage space occupied by the different possible typesin Free
Pascal. Information on internal alignment will also be given.

8.2.1 integer types

The storage size of the default integer types are given in Reference guide. In the case of user de ned-
types, the storage space occupied depends on the bounds of the type:

o If both bounds are within range -128..127, the variable is stored as a shortint (signed 8-bit
quantity).

o If both bounds are within the range 0..255, the variable is stored as a byte (unsigned 8-bit
guantity).

¢ If both bounds are within the range -32768..32767, the variable is stored as a smallint (signed
16-bit quantity).

¢ |f both bounds are within the range 0..65535, the variable is stored as aword (unsigned 16-hit
quantity)

e |f both bounds are within the range 0..4294967295, the variable is stored as a longword (un-
signed 32-bit quantity).

e Otherwisethe variableis stored as alongint (signed 32-bit quantity).

8.2.2 char types

A char , or asubrange of the char typeis stored as a byte.

8.2.3 boolean types
Thebool ean typeis stored as abyte and cantakeavalueof t r ue or f al se.

A Byt eBool isstored asabyte, aWor dBool typeis stored asaword, and al ongbool isstored
asalongint.

8.2.4 enumeration types

By default all enumerations are stored as alongword (4 bytes), which is equivalent to specifying the
{$24} , { $PACKENUM 4} or { $PACKENUM DEFAULT} switches.
This default behavior can be changed by compiler switches, and by the compiler mode.

In the t p compiler mode, or while the { $Z1} or { $PACKENUM 1} switches are in effect, the
storage space used is shown in table (8.1).

When the { $Z2} or { $PACKENUM 2} switches arein effect, the valueis stored on 2 bytes (word),
if the enumeration has less or equal then 65535 elements, otherwise, the enumeration valueis stored
as a4 byte value (longword).

78

file:../ref/ref.html

CHAPTER 8. MEMORY ISSUES

Table 8.1: Enumeration storage for t p mode

Of Elementsin Enum. Storage space used

0..255 byte (1 byte)
256..65535 word (2 bytes)
> 65535 longword (4 bytes)

8.2.5 oating point types

Floating point type sizes and mapping vary from one processor to another. Except for the Intel
80x86 architecture, the ext ended type maps to the IEEE double type if a hardware oating point
COprocessor is present.

Table 8.2: Processor mapping of real type

Processor Real type mapping
Intel 80x86 doubl e
Motorola 680x0 (with { $E-} switch) doubl e
Motorola 680x0 (with { $E+} switch) single

Floating point types have a storage binary format divided into three distinct elds: the mantissa, the
exponent and the sign bit which stores the sign of the oating point value.

single

The si ngl e type occupies 4 bytes of storage space, and its memory structure is the same as the
|EEE-754 single type. Thistypeisthe only type which is guaranteed to be available on al platforms
(either emulated via software or directly via hardware).

The memory format of the si ngl e format looks like what is shown in gure (8.1).

Figure 8.1: The single format

width in bits
1 2 23
5 exponent martizsa
m=b I=b

79

CHAPTER 8. MEMORY ISSUES

double

The doubl e type occupies 8 bytes of storage space, and its memory structure is the same as the
|EEE-754 double type.

The memory format of the doubl e format looks like like what is shown in gure (8.2).

Figure 8.2: The double format

width in bit=
1 1A 52
= exponent mantiz=a
Ish msh

On processors which do not support co-processor operations (and which have the { $E+} switch), the
doubl e type does not exist.

extended

For Intel 80x86 processors, the ext ended type has takes up 10 bytes of memory space. For more
information on the extended type consult the Intel Programmer’s reference.

For all other processors which support oating point operations, the ext ended typeis anickname
for the type which supports the most precision, this is usually the doubl e type. On processors
which do not support co-processor operations (and which have the {$E+} switch), the ext ended
type usually mapsto thesi ngl e type.

comp

For Intel 80x86 processors, the conp type contains a63-bit integral value, and asign bit (inthe MSB
position). The conp type takes up 8 bytes of storage space.

On other processors, the conp typeis not supported.

real

Contrary to Turbo Pascal, where ther eal type had a specia internal format, under Free Pascal the
real type simply maps to one of the other real types. It maps to the doubl e type on processors
which support oating point operations, while it maps to the si ngl e type on processors which do
not support oating point operations in hardware. See table (8.2) for more information on this.

8.2.6 pointer types

A poi nt er typeisstored asalongword (unsigned 32-bit value) on 32-bit processors, and is stored
as a64-hit unsigned value! on 64-bit processors.

thisis actually the qwor d type, which is not supported in Free Pascal v1.0

80

CHAPTER 8. MEMORY ISSUES

8.2.7 string types
ansistring types

The ansistring is a dynamically alocated string which has no length limitation. When the string is
no longer being referenced (its reference count reaches zero), its memory is automatically freed.

If the ansistring is a constant, then its reference count will be egual to -1, indicating that it should
never be freed. The structure in memory for an ansistring is shown in table (8.3).

Table 8.3: AnsiString memory structure (32-bit model)

Offset Contains
-12 Longint with maximum string size.
-8 Longint with actual string size.
-4 Longint with reference count.
0 Actuad array of char , null-terminated.

shortstring types

A shortstring occupies as many bytes as its maximum length plus one. The rst byte contains the
current dynamic length of the string. The following bytes contain the actual characters (of type
char) of the string. The maximum size of ashort string isthelength byte followed by 255 characters.

widestring types

The widestring (composed of unicode characters) is not supported in Free Pascal v1.0.

8.2.8 settypes

A set is stored as an array of bits, where each bit indicates if the element isin the set or excluded
from the set. The maximum number of elementsin aset is 256.

If aset has less than 32 elements, it is coded as an unsigned 32-bit value. Otherwise it is coded as a
8 element array of 32-bit unsigned values (longword) (hence a size of 256 bytes).

The longword number of a speci ¢ element Eisgivenby :
Longwor dNumber = (E div 32);

and the bit number within that 32-bit value is given by:

Bi t Nunber = (E nod 32);

8.2.9 array types

An array is stored as a contiguous sequence of variables of the components of the array. The compo-
nents with the lowest indexes are stored rst in memory. No aignment is done between each element
of the array. A multi-dimensional array is stored with the rightmost dimension increasing rst.

81

CHAPTER 8. MEMORY ISSUES

8.2.10 record types

Each eld of arecord are stored in a contigous sequence of variables, where the rst eld is stored
at the lowest address in memory. In case of variant eldsin arecord, each variant starts at the same
address in memory. Fields of record are usually aligned, unless the packed directive is speci ed
when declaring the record type. For more information on eld alignment, consult section 8.3.2, page
85.

8.2.11 object types

Objects are stored in memory just as ordinary records with an extra eld: a pointer to the Virtual
Method Table (VMT). This eld is stored rst, and al elds in the object are stored in the order
they are declared (with possible alignment of eld addresses, unless the object was declared as being
packed).

This eldisinitialized by the call to the object’s Const r uct or method. If the new operator was
used to call the constructor, the data elds of the object will be stored in heap memory, otherwise
they will directly be stored in the data section of the nal executable.

If an object doesn't have virtual methods, no pointer to aVMT isinserted.
The memory allocated looks asin table (8.4).

Table 8.4: Object memory layout (32-bit model)

Offset What
+0 Pointer to VMT (optional).
+4 Data. All eldsin the order they’ve been declared.

The Virtual Method Table (VMT) for each object type consists of 2 check elds (containing the size
of the data), a pointer to the object’s ancestor’'s VMT (Ni | if there is no ancestor), and then the
pointersto all virtual methods. The VMT layout isillustrated in table (8.5). The VMT is constructed
by the compiler.

Table 8.5: Object Virtual Method Table memory layout (32-bit model)

Offset What

+0 Size of object type data

+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT, Ni | if no ancestor available.

+12 Pointers to the virtual methods.

8.2.12 class types

Just like objects, classes are stored in memory just as ordinary records with an extra eld: a pointer
to the Virtual Method Table (VMT). This eld isstored rst, and all eldsin the class are stored in
the order they are declared.

Contrary to objects, al data elds of a class are always stored in heap memory.
The memory allocated looks asin table (8.6).

82

CHAPTER 8. MEMORY ISSUES

Table 8.6: Class memory layout (32-bit model)

Offset What

+0 Pointer to VMT.
+4 Data. All eldsin the order they’ve been declared.

The Virtual Method Table (VMT) of each class consists of several elds, which are used for runtime
type information. The VMT layout is illustrated in table (8.7). The VMT is constructed by the

compiler.

Table 8.7: Class Virtual Method Table memory layout (32-bit model)

Offset What

+0 Size of object type data

+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMT, Ni | if no ancestor available.

+12 Pointer to the class name (stored asashor t st ri ng).

+16 Pointer to the dynamic method table (using nessage with integers).
+20 Pointer to the method de nition table.

+24 Pointer to the eld de nition table.

+28 Pointer to type information table.

+32 Pointer to instance initialization table.

+36 Reserved.

+40 Pointer to the interface table.

+44 Pointer to the dynamic method table (using nessage with strings).
+48 Pointer to the Dest r oy destructor.

+52 Pointer to the Newl nst ance method.

+56 Pointer to the Fr eel nst ance method.

+60 Pointer to the Saf eCal | Except i on method.

+64 Pointer to the Def aul t Handl er method.

+68 Pointer to the Af t er Const r uct i on method.

+72 Pointer to the Bef or eDest r uct i on method.

+76 Pointer to the Def aul t Handl er St r method.

+80 Pointers to other virtual methods.

8.2.13 letypes

File types are represented as records. Typed lesand untyped les are represented as a xed record:

filerec = packed record

handl e

node

recsize

_private

user dat a

nane
End;

| ongi nt;
| ongi nt;
| ongi nt ;
array[1..32] of byte;
array[1..16] of byte;
array[0..255] of char;

83

CHAPTER 8. MEMORY ISSUES

Text lesare described using the following record:

Text Buf = array[O0..255] of char;

textrec packed record
handl e . longint;
node . longint;
buf si ze : longint;
_private : longint;
buf pos . longint;
buf end : longint;
buf ptr . “textbuf;
openfunc : pointer

i nout func : pointer;
flushfunc : pointer;
cl osefunc : pointer;
userdata : array[l..16] of byte;

nane : array[0..255] of char;
buf f er . textbuf;
End;

handle The handle €eld returns the le handle (if the leis opened), as returned by the operating
system.

mode The mode eld can take one of several values. Wheniitis f ntl osed, thenthe leisclosed,
and the handl e eldisinvalid. When the value is equal to f m nput, it indicates that the
leisopened for read only access. f mout put indicates write only access, and the f mi nout
indicates read-write access to the le.

name Thenane eldisanull terminated character string representing the name of the le.

userdata Theuser dat a eldis never used by Free Pascal, and can be used for special purposes
by software devel oppers.

8.2.14 procedural types
A procedural type is stored as a generic pointer, which stores the address of the routine.

A procedura type to a normal procedure or function is stored as a generic pointer, which stores the
address of the entry point of the routine.

In the case of amethod procedural type, the storage consists of two pointers, the rst being a pointer
to the entry point of the method, and the second one being apointer to sel f (the object instance).

8.3 Dataalignment

8.3.1 Typed constants and variable alignment

All static data (variables and typed constants) which are greater than a byte are usually aligned on
a power of two boundary. This alignment applies only to the start address of the variables, and not
the alignment of elds within structures or objects for example. For more information on structured
alignment, section 8.3.2, page 85. The alignment is similar across the different target processors. 2

2The Intel 80x86 version does not align data in the case of constant strings, constant sets, constant oating point values
amd global variables. Thiswill be xed inthe version 1.1 release.

CHAPTER 8. MEMORY ISSUES

Table 8.8: Data aignment

Datasize (bytes) Alignment (small size) Alignment (fast)

1 1 1
2-3 2 2
4-7 2 4
8+ 2 4

The aignment columns indicates the address alignment of the variable, i.e the start address of the
variable will be aligned on that boundary. The small size alignment is valid when the code generated
should be optimized for size (- Og compiler option) and not speed, otherwise and by default, the fast
alignment is used to align the data.

8.3.2 Structured types alignment

By default all elementsin a structure are aligned to a 2 byte boundary, unless the $PACKRECORDS
directive or packed modi er is used to aign the data in another way. For examplea r ecor d or
obj ect having a1 byte element, will have its size rounded up to 2, so the size of the structure will
actually be 2 bytes.

8.4 Theheap

The heap is used to store all dynamic variables, and to store class instances. The interface to the
heap isthe same asin Turbo Pascal, although the effects are maybe not the same. On top of that, the
Free Pascal run-time library has some extra possibilities, not available in Turbo Pascal. These extra
possibilities are explained in the next subsections.

8.4.1 Heap allocation strategy

The heap is a memory structure which is organized as a stack. The heap bottom is stored in the
variable HeapOr g. Initially the heap pointer (HeapPt r) points to the bottom of the heap. When
avariable is allocated on the heap, HeapPt r is incremented by the size of the allocated memory
block. This has the effect of stacking dynamic variables on top of each other.

Each time ablock is allocated, its size is normalized to have a granularity of 16 bytes.

When Di spose or Fr eeMemis called to dispose of a memory block which is not on the top of
the heap, the heap becomes fragmented. The deallocation routines also add the freed blocks to the
freelist whichisactualy alinked list of free blocks. Furthermore, if the deallocated block was
lessthen 8K in size, the free list cacheis aso updated.

The free list cache is actually a cache of free heap blocks which have speci ¢ lengths (the adjusted
block size divided by 16 gives the index into the free list cache table). It is faster to access then
searching through the entiref r eel i st .

Theformat of an entry inthef r eel i st isasfollows:

PFreeRecord = ~TFreeRecord;
TFreeRecord = record

Size : l|ongint;

Next : PFreeRecord,;

Prev : PFreeRecord;

85

CHAPTER 8. MEMORY ISSUES

end;

The Next eld pointsto the next free block, whilethe Pr ev eld pointsto the previous free block.
The algorithm for alocating memory is as follows:

1. Thesize of the block to allocate is adjusted to a 16 byte granularity.

2. The cached freelist is searched to nd afree block of the speci ed size or bigger size, if so it
is allocated and the routine exits.

3. Thefreelist issearchedto nd afreeblock of the speci ed size or of bigger size, if so it
is allocated and the routine exits.

4. If not found in the f r eel i st the heap is grown to allocate the speci ed memory, and the
routine exits.

5. If the heap cannot be grown internally anymore, the runtime library generates a runtime error
203.

8.4.2 The heap grows
By default, HeapEr r or pointsto the G- owHeap function, which tries to increase the heap.

The Gr owHeap function issues a system call to try to increase the size of the memory available to
your program. It rst tries to increase memory in a 256Kb chunk if the size to allocate is less than
256Kb, or 1024K otherwise. If this fails, it tries to increase the heap by the amount you requested
from the heap.

If the call to Gr owHeap was successful, then the needed memory will be allocated.

If thecall to Gr owHeap fails, the valuereturned dependson thevalueof theRet ur nNi | | f G- owHeapFai | s
global variable. Thisis summarized in table (8.9).

Table 8.9: ReturnNillfGrowHeapFails value

ReturnNilGrowHeapFails | Default memory
value manager action
FALSE (The default) Runtime error 203 generated
TRUE Get Mem Real | ocMemand Newreturns ni |

Ret urnNi | I f Gr owHeapFai | s can beset to changethe behavior of the default memory manager
error handler.

8.4.3 Debugging the heap

Free Pascal provides a unit that allows you to trace allocation and deallocation of heap memory:
heaptrc.

If you specify the - gh switch on the command-line, or if you include heapt r ¢ asthe rst unitin
your uses clause, the memory manager will trace what is allocated and deallocated, and on exit of
your program, a summary will be sent to standard output.

More information on using the heapt r ¢ mechanism can be found in the Users guide and Unit
reference.

86

file:../user/user.html
file:../units/units.html
file:../units/units.html

CHAPTER 8. MEMORY ISSUES

8.4.4 Writing your own memory manager

Free Pascal alowsyou to write and use your own memory manager. The standard functions Get Mem
FreeMem Real | ocMemetc. use a special record in the system unit to do the actual memory
management. The system unit initializes this record with the system unit’s own memory manager,
but you can read and set this record using the Get Menor yManager and Set Menor yManager
cals:

procedure Get MenoryManager (var MemMgr: TMenoryManager);
procedure Set MenoryManager (const MemMgr: TMenoryManager) ;

the TMenor yManager record is de ned asfollows:

TMenor yManager = record

Get nem . Function(Size: Longint): Pointer;
Freenmem : Function(var p:pointer):Longint;
Freenenti ze : Function(var p:pointer; Size:Longint):Longint;
Al'l ocMem : Function(Size:longint):Pointer;
ReAl'l ocMem : Function(var p:pointer;Size:longint):Pointer;
MenSi ze . function(p: pointer):Longint;
Get HeapSt at us : function : THeapSt at us;
Get FPCHeapSt at us . function : TFPCHeapSt at us;
end;

As you can see, the elements of this record are procedural variables. The system unit does nothing
but call these various variables when you allocate or deallocate memory.

Each of these functions corresponds to the corresponding call in the system unit. We'll describe
each one of them:

Getmem This function allocates a new block on the heap. The block should be Si ze bytes long.
Thereturn value is a pointer to the newly allocated block.

Freemem should release a previously allocated block. The pointer P pointsto a previously allocated
block. The Memory manager should implement a mechanism to determine what the size of
the memory block is 2 The return value is optional, and can be used to return the size of the
freed memory.

FreememSize This function should rel ease the memory pointed to by P. The argument Si ze isthe
expected size of the memory block pointed to by P. This should be disregarded, but can be used
to check the behaviour of the program.

AllocMem |s the same as getmem, only the allocated memory should be Iled with zeroes before
the call returns.

ReAllocMem Should allocate amemory block Si ze byteslarge, and should Il it with the contents
of the memory block pointed to by P, truncating this to the new size of needed. After that, the
memory pointed to by P may be deallocated. The return value is a pointer to the new memory
block. Note that P may be Ni | , in which case the behaviour is equivalent to Get Mem

MemSize should return the total amount of memory available for alocation. This function may
return zero if the memory manager does not alow to determine thisinformation.

GetHeapStatus should return a THeapSt at us record with the status of the memory manager.
Thisrecord should be Iled with Delphi-compliant values.

3By storing it's size at a negative offset for instance.

87

CHAPTER 8. MEMORY ISSUES

GetHeapStatus should return a TFPCHeap St at us record with the status of the memory manager.
This record should be Iled with FPC-Compliant values.

To implement your own memory manager, it is suf cient to construct such a record and to issue a
call to Set Menor yManager .

To avoid con icts with the system memory manager, setting the memory manager should happen as
soon as possible in the initialization of your program, i.e. before any call to get memis processed.

This means in practice that the unit implementing the memory manager should be the rst in the
uses clause of your program or library, since it will then be initialized before all other units (except
of the system unit)

Thisaso meansthat it is not possible to use the heaptrc unit in combination with a custom memory
manager, since the heaptrc unit uses the system memory manager todo all it'sallocation. Putting the
heaptrc unit after the unit implementing the memory manager would overwrite the memory manager
record installed by the custom memory manager, and vice versa.

The following unit shows a straightforward implementation of a custom memory manager using the
memory manager of the Clibrary. It is distributed as a package with Free Pascal.

unit cnem
{ $mode obj f pc}
interface

Function Malloc (Size : Longint) : Pointer;cdecl;
external "¢’ name 'malloc’;
Procedure Free (P : pointer); cdecl; external 'c¢c' name 'free’;
Procedure FreeMem (P : Pointer); cdecl; external 'c' name 'free’;
function ReAlloc (P : Pointer; Size : longint) : pointer; cdecl;
external "¢’ nanme 'realloc’;
Function CAlloc (unitSize, UnitCount : Longint) : pointer;cdecl;
external 'c¢’ name ’'calloc’;

’

’

)

i mpl enent ati on
Function CGetMem (Size : Longint) : Pointer;
begi n

resul t: =Ml oc(Size);
end;
Function CFreeMem (Var P : pointer) : Longint;
begi n

Free(P);

Resul t : =0;
end;
Functi on CFreeMentsi ze(var p:pointer; Size:Longint):Longint;
begi n

Resul t : =CFreeMen(P) ;
end;

88

CHAPTER 8. MEMORY ISSUES

Function CAll ocMen(Size : Longint) : Pointer;
begi n
Resul t: =cal | oc(Si ze, 1);
end;
Function CReAl |l ocMem (var p:pointer;Size:longint):Pointer;
begi n
Resul t: =real | oc(p, si ze);

end;

Function CMenti ze (p:pointer): Longint;

begi n
Resul t: =0;
end;
Const
CMvenor yManager : TMenoryManager =
(

Get Mem : CGet nem

FreeMem : CFreeMem
FreenentSi ze : CFreenenti ze;
Al'l ocMem : CAl'l ocMem

Real | ocMem : CReAl | ocMem
Menti ze : CMenSi ze;

Get HeapStatus : NI ;

Get FPCHeapStatus : N |;

)

Var
A dMenor yManager : TMenoryManager ;

Initialization
Get Menor yManager (O dMenor yManager) ;
Set Menor yManager (CnenoryManager);

Fi nal i zation
Set Menor yManager (O dMenor yManager) ;
end.

8.5 Using bos memory under the Go32 extender

Because Free Pascal for Dos is a 32 bit compiler, and uses a DOS extender, accessing DOS memory
isn't trivial. What followsis an attempt to an explanation of how to access and use DOS or real mode
memory*.

In Proteced Mode, memory is accessed through Selectors and Offsets. You can think of Selectors as
the protected mode equivalents of segments.

4Thanks for the explanation to Thomas Schatzl (E-mail: t om at _wor k@eoci ti es. com

89

CHAPTER 8. MEMORY ISSUES

In Free Pascal, a pointer is an offset into the DS sel ector, which points to the Data of your program.

To access the (real mode) bos memory, somehow you need a selector that points to the bos mem-
ory. The go32 unit provides you with such a selector: The DosMentSel ect or variable, asit is
conveniently called.

You can aso allocate memory in DOS's memory space, using the gl obal _dos_al | oc function
of the go32 unit. This function will allocate memory in a place where DOS seesit.

Asan example, hereisafunction that returns memory in real mode DOs and returns a selector:offset
pair for it.

procedure dosal l oc(var selector : word;
var segnent : word;

size : longint);
var result : longint;
begi n
result := global _dos_alloc(size);
selector := word(result);
segnment := word(result shr 16);
end;

(You need to free thismemory using the gl obal _dos_f r ee function.)

You can access any placein memory using aselector. You can get aselector usingtheal | ocat e | dt _descri ptor
function, and then | et this selector point to the physical memory youwant usingtheset _segnent _base_addr ess
function, and setitslengthusingset _segnent _| i m t function. You can manipulate the memory
pointed to by the selector using the functions of the GO32 unit. For instancewiththeseg _fi | | char
function. After using the selector, you must freeit againusingthef r ee_| dt _sel ect or function.

More information on all this can be found in the Unit reference, the chapter on the go32 unit.

90

file:../units/units.html

Chapter 9

Resource strings

9.1 Introduction

Resource strings primarily exist to make internationalization of applications easier, by introducing a
language construct that provides a uniform way of handling constant strings.

Most applications communicate with the user through some messages on the graphical screen or
console. Storing these messagesin special constantsallowsto storethem in auniformway in separate
les, which can be used for trandation. A programmers interface exists to manipulate the actual
values of the constant strings at runtime, and a utility tool comes with the Free Pascal compiler to
convert the resource string les to whatever format is wanted by the programmer. Both these things

are discussed in the following sections.

9.2 Theresourcestring le

When aunit is compiled that containsar esour cest ri ng section, the compiler does 2 things:

1. It generates atable that contains the value of the strings as it is declared in the sources.

2. It generates a resource string le that contains the names of all strings, together with their
declared values.

This approach has 2 advantages: rst of all, the value of the string is always present in the pro-
gram. If the programmer doesn’t care to trandlate the strings, the default values are always present
in the binary. This also avoids having to provide a le containing the strings. Secondly, having all
strings together in a compiler generated le ensures that all strings are together (you can have mul-
tiple resourcestring sections in 1 unit or program) and having this lein a xed format, alows the
programmer to choose his way of internationalization.

For each unit that is compiled and that contains a resourcestring section, the compiler generatesa le
that has the name of the unit, and an extension .rst. The format of this leisasfollows:

1. Anempty line.

2. A line starting with ahash sign (#) and the hash value of the string, preceded by thetext hash
val ue =.

3. Athirdline, containing the name of theresource string intheformat uni t nane. const ant nane,
all lowercase, followed by an egqual sign, and the string value, in aformat equal to the pascal

91

CHAPTER 9. RESOURCE STRINGS

representation of this string. The line may be continued on the next line, in that case it reads
as apascal string expression with aplussigniniit.

4. Another empty line.

If the unit containsno r esour cest ri ng section, no leis generated.
For example, the following unit:

unit rsdeno;

{$node del phi}
{ $H+}

i nterface
resourcestring

First = "First’;
Second = ' A Second very long string that should cover nore than 1 line’;

i npl enent ati on
end.

Will result in the following resource string le:

hash val ue = 5048740
rsdemo.first="First’

hash val ue = 171989989
rsdeno. second=" A Second very long string that should cover nore than 1 |i’'+
"ne

The hash value is calculated with the function Hash. It is present in the objpas unit. The valueis
the same value that the GNU gettext mechanism uses. It isin no way unique, and can only be used
to speed up searches.

The rstconv utility that comes with the Free Pascal compiler allows to manipulate these resource
string les. At the moment, it can only be used to makea .po lethat can befed to the GNU msgfmt
program. If someone wishes to have another format (Win32 resource les spring to mind), one can
enhance the rstconv program so it can generate other types of lesaswell. GNU gettext was chosen
because it is available on all platforms, and is already widely used in the Uni x and free software
community. Since the Free Pascal team doesn’'t want to restrict the use of resource strings, the .rst
format was chosen to provide a neutral method, not restricted to any tool.

If you use resource strings in your units, and you want people to be able to trandate the strings, you
must provide the resource string le. Currently, there is no way to extract them from the unit le,
though thisisin principle possible. It isnot required to do this, the program can be compiled without
it, but then the translation of the stringsisn’t possible.

92

CHAPTER 9. RESOURCE STRINGS

9.3 Updatingthestring tables

Having compiled a program with resourcestrings is not enough to internationalize your program. At
run-time, the program must initialize the string tables with the correct values for the anguage that
the user selected. By default no such initialization is performed. All strings are initialized with their
declared values.

The objpas unit provides the mechanism to correctly initialize the string tables. There is no need
to include this unit in a uses clause, since it is automatically loaded when a program or unit is
compiled in Del phi or obj f pc mode. Since this is required to use resource strings, the unit is
always loaded when needed.

The resource strings are stored in tables, one per unit, and one for the program, if it contains a
resour cest ri ng sectionaswell. Each resourcestring is stored with it's name, hash value, default
value, and the current value, al as Ansi St ri ngs.

The objpas unit offers methods to retrieve the number of resourcestring tables, the number of strings
per table, and the above information for each string. It also offers a method to set the current value
of the strings.

Here are the declarations of all the functions:

Function ResourceStringTabl eCount : Longint;
Function ResourceStringCount (Tablelndex : longint) : |ongint;
Function Get ResourceStringNane(Tabl el ndex,
Stringlndex : Longint) : Ansistring;
Functi on Get ResourceStri ngHash(Tabl el ndex,
Stringlndex : Longint) : Longint;
Function Get ResourceStringDef aul t Val ue(Tabl el ndex,
Stringlndex : Longint) : AnsiString;
Function Get ResourceStringCurrent Val ue(Tabl el ndex,
Stringlndex : Longint) : AnsiString;
Function Set ResourceStringVal ue(Tabl el ndex,

Stringlndex : |ongint;
Value : Ansistring) : Bool ean;
Procedure Set ResourceStrings (SetFunction : TResourcelterator);

Two other function exist, for convenience only:

Function Hash(S : AnsiString) : |ongint;
Procedur e Reset Resour ceTabl es;

Here isashort explanation of what each function does. A more detailed explanation of the functions
can be found in the Reference guide.

ResourceStringTableCount returns the number of resource string tables in the program.

ResourceStringCount returns the number of resource string entries in a given table (tables are de-
noted by a zero-based index).

GetResourceStringName returns the name of a resource string in a resource table. This is the
name of the unit, adot (.) and the name of the string constant, all in lowercase. The strings are
denoted by index, also zero-based.

GetResourceStringHash returns the hash value of a resource string, as calculated by the compiler
with the Hash function.

GetResourceStringDefaultValue returns the default value of a resource string, i.e. the value that
appears in the resource string declaration, and that is stored in the binary.

93

file:../ref/ref.html

CHAPTER 9. RESOURCE STRINGS

GetResourceStringCurrentValue returns the current value of a resource string, i.e. the value set
by the initialization (the default value), or the value set by some previous internationalization
routine.

SetResourceStringValue setsthe current value of aresource string. This function must be called to
initialize all strings.

SetResourceStrings giving this function a callback will cause the calback to be called for all re-
source strings, one by one, and set the value of the string to the return value of the callback.

Two other functions exist, for convenience only:

Hash can be used to calculate the hash value of a string. The hash value stored in the tables is the
result of this function, applied on the default value. That value is calculated at compile time
by the compiler.

ResetResourceTables will reset all the resource strings to their default values. It is called by the
initialization code of the objpas unit.

Given some Tr ansl at e function, the following code would initialize all resource strings:

Var |1,J : Longint;
S : AnsiString;

begi n
For 1:=0 to ResourceStringTabl eCount-1 do
For J:=0 to ResourceStringCount(i)-1 do
begi n
S: =Transl at e(Get Resour ceSt ri ngDef aul t Val ue(1,J));
Set Resour ceStri ngVal ue(l,J,9S);
end;
end;

Other methods are of course possible, and the Tr ans| at e function can be implemented in avariety
of ways.

9.4 GNU gettext

The unit gettext provides a way to internationalize an application with the GNU gettext utilities.
This unit is supplied with the Free Component Library (FCL). it can be used as follows:

for agiven application, the following steps must be followed:
1. Collect al resource string les and concatenate them together.

2. Invoke the rstconv program with the le resulting out of step 1, resulting in asingle .po le
containing all resource strings of the program.

3. Trandate the.po leof step 2 in all required languages.

4. Run the msgfmt formatting program on all the .po les, resulting in aset of .mo les, which
can be distributed with your application.

5. Cadll thegettext unit’'sTr ans| at eReosur ceSt ri ngs method, giving it atemplate for the
location of the.mo les, eg. asin

94

CHAPTER 9. RESOURCE STRINGS

Transl at eResourcestrings(’intl/restest.%.no’');

the % speci er will be replaced by the contents of the LANG environment variable. This call
should happen at program startup.

An example program exists in the FCL sources, in the fcl/tests directory.

9.5 Caveat

In principleit is possible to translate all resource strings at any time in arunning program. However,
this change is not communicated to other strings; its changeis noticed only when a constant string is
being used.

Consider the following example:

Const
help = "Wth a little help of a programer.’;

Var
A : AnsiString;
begi n
{ lots of code }
A: =Hel p;
{ Agai n sone code}
Transl ateStri ngs;
{ More code }
After thecall to Tr ansl at eSt ri ngs, the value of Awill remain unchanged. This means that the
assignment A: =Hel p must be executed again in order for the change to become visible. Thisis

important, especially for GUI programs which have e.g. amenu. In order for the change in resource
strings to become visible, the new values must be rel oaded by program code into the menus. ..

95

Chapter 10

Thread programming

10.1 Introduction

Free Pascal supports thread programming: There is a language construct available for thread-loca
storage (Thr eadVar), and cross-platform low-level thread routines are available for those operating
systems that support threads.

All routines for threading are available in the system unit, under the form of a thread manager. A
thread manager must implement some basic routines which the RTL needs to be able to support
threading. For Windows, a default threading manager is integrated in the system unit. For other
platforms, a thread manager must be included explicitly by the programmer. On systems where
posix threads are availabl e, the cthreads unit implements a thread manager which uses the C POSIX
thread library. No native pascal thread library exists for such systems.

Although it isnot forbidden to do so, it is not recommended to use system-speci ¢ threading routines:
The language support for multithreaded programs will not be enabled, meaning that threadvars will
not work, the heap manager will be confused which may lead to severe program errors.

If no threading support is present in the binary, the use of thread routines or the creation of a thread
will result in an exception or arun-time error 232.

For LINUX (and other Unixes), the C thread manager can be enabled by inserting the ct hr eads
unit in the program’s unit clause. Without this, threading programs will give an error when started.
It isimperative that the unit be inserted as early in the uses clause as possible.

At alater time, a system thread manager may be implemented which implements threads without
Libc support.

10.2 Programming threads

To start anew thread, the Begi nThr ead function should be used. It has one mandatory argument:
the function which will be executed in the new thread. The result of the function is the exit result
of the thread. The thread function can be passed a pointer, which can be used to acces initialization
data: The programmer must make sure that the data is accessible from the thread and does not go out
of scope before the thread has accessed it.

Type
TThreadFunc = function(paraneter : pointer) : |longint;
function Begi nThread(ThreadFunction: tthreadfunc) : Dwrd;

96

CHAPTER 10. THREAD PROGRAMMING

function Begi nThread(Thr eadFuncti on: tthreadfunc;
p: pointer): DWrd;
functi on Begi nThread(Thr eadFuncti on: tthreadfunc;
p: pointer;
var Threadld : THandl e) : DWrd;

If present, the pointer p will be passed to the thread function when it is started (otherwise, Ni | is
passed). If Thr eadl Dis present, the ID of the thread will be stored in it.

The newly started thread will run until the Thr eadFunct i on exits, or until it explicitly calls the
EndThr ead function:

procedure EndThread(ExitCode : DWrd);
procedure EndThread;

The exitcode can be examined by the code which started the thread.
The following is asmall example of how to program athread:

{$node obj f pc}
{$t hr eadi ng on}

uses
sysutils {$ifdef unix},cthreads{$endif} ;

const
t hreadcount = 100;
stringlen = 10000;

var
finished : |ongint;
t hr eadvar
thri : longint;
function f(p : pointer) : longint;
var

s : ansistring;

begi n
Witeln('thread ',longint(p),’ started);
thri: =0;
while (thri<stringlen) do
begin
s:=s+'1';
inc(thri);
end;
Witeln('thread ’,longint(p),’ finished);
I nt er Lockedl ncrenent (fi ni shed);
f:=0;
end;

var
i : longint;

97

CHAPTER 10. THREAD PROGRAMMING

begi n
fini shed: =0;
for i:=1 to threadcount do
Begi nThread(@, pointer(i));
whi |l e fini shed<t hreadcount do
Witel n(finished);
end.

Thel nt er Lockedl ncr enent isathread-safe version of the standard | nc function.

To provide system-independent support for thread programming, some utility functions are imple-
mented to manipulate threads. To use these functions the thread ID must have been retrieved when
the thread was started, because most functions require the ID to identify the thread on which they
should act:

function SuspendThread(threadHandl e: dword): dword;
function ResumeThread(threadHandl e: dword): dword;
function Kill Thread(threadHandl e: dword): dword;
function Wit For ThreadTer m nat e(t hr eadHandl e: dwor d;
TimeoutMs : longint): dword,
function ThreadSet Priority(threadHandl e: dword;
Prio: longint): bool ean;
function ThreadGetPriority(threadHandl e: dword): Integer;
function GetCurrent Threadl d: dword;
procedure ThreadSwitch;

The meaning of these functions should be clear:

SuspendThread Suspends the execution of the thread.
ResumeThread Resumes execution of a suspended thread.
KillThread Killsthethread: the thread is removed from memory.

WaitFor ThreadTerminate Waits for the thread to terminate. The function returns when the thread
has nished executing, or when the timeout expired.

ThreadSetPriority Setsthe execution priority of the thread. Thiscall is not always allowed.
ThreadGetPriority Returnsthe current execution priority of the thread.
GetCurrentThreadld Returnsthe ID of the current thread.

ThreadSwitch Allows other threads to execute at this point, can cause a thread switch, but thisis
not guaranteed, it depends on the OS and the number of processors.

10.3 Critical sections

When programming threads, it is sometimes necessary to avoid concurrent access to certain re-
sources, or to avoid having a certain routine executed by two threads. This can be done using a
Critical Section. The FPC heap manager uses critical sections when multithreading is enabled.

The TRTLCri ti cal Secti on typeisan Opague type; it depends on the OS on which the code is
executed. It should beinitialized beforeitis rst used, and should be disposed of when it is no longer
necessary.

98

CHAPTER 10. THREAD PROGRAMMING

To protect a piece of code, acall to Enter Cri ti cal Secti on should be made: When this call
returns, it is guaranteed that the current thread is the only thread executing the subsequent code. The
call may have suspended the current thread for an inde nite time to ensure this.

When the protected code is nished, LeaveCriti cal Secti on must be caled: thiswill enable
other threads to start executing the protected code. To minimize waiting time for the threads, it is
important to keep the protected block as small as possible.

The de nition of these callsis asfollows:

procedure InitCritical Section(var cs: TRTLCritical Section);
procedure DoneCritical Section(var cs: TRTLCritical Section);
procedure EnterCritical Section(var cs: TRTLCritical Section);
procedure LeaveCritical Section(var cs: TRTLCritical Section);

The meaning of these calls is again almost obvious:

InitCriticalSection Initializesacritical section. Thiscall must be madebeforeeitherEnter Crititi cal Secti on
or LeaveCriti cal Secti on isused.

DoneCriticalSection Frees the resources associated with a critical section. After this call neither
EnterCrititical SectionnorlLeaveCritical Secti on may beused.

EnterCritical Section When this call returns, the calling thread is the only thread running the code
betweentheEnt er Cri ti cal Secti on call andthefollowingLeaveCriti cal section
call.

L eaveCriticalSection Signals that the protected code can be executed by other threads.
Note that the LeaveCri ti cal secti on cal must be executed. Failing to do so will prevent all

other threads from executing the code in the critical section. It is therefore good practice to enclose
thecritical sectioninaTry. . fi nal | y block. Typicaly, the code will ook as follows:

Var
MyCS : TRTLCritical Secti on;

Procedure Critical Proc;

begi n
EnterCritical Secti on(MCS);
Try
/'l Protected Code
Final l'y
LeaveCriti cal Secti on(MCS);
end;
end;

Procedure ThreadProcedur e;

begi n

/'l Code executed in threads...
Critical Proc;

/1 More Code executed in threads...
end;

begi n

99

CHAPTER 10. THREAD PROGRAMMING

InitCritical Secti on(MCS);

// Code to start threads.

DoneCri ti cal Secti on(M/CS);
end.

10.4 TheThread Manager

Just like the heap is implemented using a heap manager, and widestring management is left to a
widestring manager, the threads have been implemented using a thread manager. This means that
there is a record which has elds of procedural type for all possible functions used in the thread
routines. The thread routines use these eldsto do the actual work.

The thread routines install a system thread manager speci ¢ for each system. On Windows, the
normal Windows routines are used to implement the functions in the thread manager. On Linux
and other unices, the system thread manager does nothing: it will generate an error when thread
routines are used. The rationale is that the routines for thread management are located in the C
library. Implementing the system thread manager would make the RTL dependent on the C library,
which is not desirable. To avoid dependency on the C library, the Thread Manager is implemented
in a separate unit (cthreads). The initialization code of this unit sets the thread manager to a thread
manager record which uses the C (pthreads) routines.

The thread manager record can be retrieved and set just as the record for the heap manager. The
record looks (currently) as follows:

TThr eadManager = Record

I ni t Manager Function : Bool ean;
DoneManager Function : Bool ean;
Begi nThr ead TBegi nThr eadHandl er ;
EndThr ead TEndThr eadHandl er ;
SuspendThr ead TThr eadHandl er;
ResuneThr ead TThr eadHandl er;

Ki || Thr ead TThr eadHandl er;

Thr eadSwi t ch

VWi t For Thr eadTer mi nat e :

ThreadSetPriority
ThreadGetPriority
Get Current Threadl d
InitCritical Section
DoneCritical Section
EnterCritical Section
LeaveCritical Section
| ni t Thr eadVar

Rel ocat eThr eadVar

Al | ocat eThr eadVar s
Rel easeThr eadVar s

TThr eadSwi t chHandl er;

TWai t For Thr eadTer m nat eHandl er;
TThreadSet Pri ori t yHandl er;
TThreadGet PriorityHandl er;
TGet Current Thr eadl dHandl er;
TCritical Secti onHandl er;
TCritical Secti onHandl er;
TCritical Secti onHandl er;
TCritical Secti onHandl er;

Tl ni t Thr eadVar Handl er;

TRel ocat eThr eadVar Handl er;
TAI | ocat eThr eadVar sHandl er;
TRel easeThr eadVar sHandl er;

end;

The meaning of most of these functions should be obvious from the descriptionsin previous sections.

Thel ni t Manager and DoneManager arecalled when thethreadmanager isset (I ni t Manager),
or when it is unset (DoneManager). They can be used to initialize the thread manager or to clean
up when it isdone. If either of them returns Fal se, the operation fails.

There are some special entries in the record, linked to thread variable management:

InitThreadVar iscalled when athread variable must beinitialized. It is of type

100

CHAPTER 10. THREAD PROGRAMMING

TI ni t Thr eadVar Handl er = Procedure(var offset : dword;size : dword);

The of f set parameter indicates the offset in the thread variable block: All thread variables
are located in a single block, one after the other. The size parameter indicates the size of the
thread variable. This function will be called once for al thread variablesin the program.

RelocateThreadVar is called each time when athread is started, and once for the main thread. It is
of type:

TRel ocat eThr eadVar Handl er = Function(offset : dword) : pointer;

It should return the new location for the thread-local variable.

AllocateThreadVars is caled when room must be allocated for all threadvars for a new thread.
It's a simple procedure, without parameters. The total size of the threadvars is stored by the
compilerinthet hr eadvar bl ocksi ze global variable. The heap manager may not be used
in this procedure: the heap manager itself uses threadvars, which have not yet been allocated.

ReleaseThreadVars This procedure (without parameters) is called when a thread terminates, and
al memory allocated must be released again.

101

Chapter 11

Optimizations

11.1 Non processor speci ¢

The following sections describe the general optimizations done by the compiler, they are not proces-
sor speci ¢. Some of these require some compiler switch override while others are done automati-
cally (those which require a switch will be noted as such).

11.1.1 Constant folding
In Free Pascal, if the operand(s) of an operator are constants, they will be evaluated at compile time.
Example

X: =1+2+3+6+5;
will generate the same code as
x: =17,

Furthermore, if an array index is a constant, the offset will be evaluated at compile time. This means
that accessing MyData[5] is as ef cient as accessing anormal variable.

Finally, calling Chr , H , Lo, Or d, Pr ed, or Succ functions with constant parameters generates no
run-time library calls, instead, the values are evaluated at compile time.

11.1.2 Constant merging

Using the same constant string, oating point value or constant set two or more times generates only
one copy of that constant.

11.1.3 Short cut evaluation

Evaluation of boolean expression stops as soon as the result is known, which makes code execute
faster then if al boolean operands were evaluated.

11.1.4 Constant set inlining

Using the i n operator is always more ef cient then using the equivalent <>, =, <=, >=, < and >
operators. This is because range comparisons can be done more easily with i n then with normal

102

CHAPTER 11. OPTIMIZATIONS

comparison operators.

11.1.5 Small sets

Sets which contain less then 33 elements can be directly encoded using a 32-bit value, therefore no
run-time library calls to evaluate operands on these sets are required; they are directly encoded by
the code generator.

11.1.6 Range checking

Assignments of constants to variables are range checked at compile time, which removes the need of
the generation of runtime range checking code.

11.1.7 And instead of modulo

When the second operand of anbd on an unsigned value is a constant power of 2, an and instruction
is used instead of an integer division. This generates more ef cient code.

11.1.8 Shifts instead of multiply or divide

When one of the operands in a multiplication is a power of two, they are encoded using arithmetic
shift instructions, which generates more ef cient code.

Similarly, if the divisor in adi v operation is a power of two, it is encoded using arithmetic shift
instructions.

The same is true when accessing array indexes which are powers of two, the address is calculated
using arithmetic shiftsinstead of the multiply instruction.

11.1.9 Automatic alignment
By default all variables larger then a byte are guaranteed to be aligned at least on aword boundary.
Alignment on the stack and in the data section is processor dependant.

11.1.10 Smart linking

This feature removes all unreferenced code in the nal executable le, making the executable le
much smaller.

Smart linking is switched on with the - Cx command-line switch, or using the { $SMARTLI NK ON}
global directive.

11.1.11 Inline routines

The following runtime library routines are coded directly into the nal executable: Lo, Hi , Hi gh,
Si zeof , TypeOf, Lengt h, Pred, Succ, | nc, Dec and Assi gned.

11.1.12 Stack frame omission

Under speci ¢ conditions, the stack frame (entry and exit code for the routine, see section section
6.3, page 63) will be omitted, and the variable will directly be accessed viathe stack pointer.

103

CHAPTER 11. OPTIMIZATIONS

Conditions for omission of the stack frame:

e The function has no parameters nor local variables.
e Routineisdeclared with theassenbl er modi er.

e Routineisnot aclass.

11.1.13 Register variables

When using the - Or switch, local variables or parameters which are used very often will be moved
to registers for faster access.

11.2 Processor speci ¢

Thislists the low-level optimizations performed, on a processor per processor basis.

11.2.1 Intel 80x86 specic

Here follows alisting of the optimizing techniques used in the compiler:

1. When optimizing for aspeci ¢ Processor (- Opl, - Op2, - Op3,thefollowingisdone:
e In case statements, a check is done whether ajump table or a sequence of conditional
jumps should be used for optimal performance.

e Determines a number of strategies when doing peephole optimization, e.g.: novzbl
(%ebp), %eax will be changed into xor| %ax, %eax; mnovb (%bp), %al
for Pentium and PentiumMMX.

2. When optimizing for speed (- OG, the default) or size (- Og), a choice is made between using
shorter instructions (for size) such asent er $4, or longer instructionssubl $4, %esp for
speed. When smaller size is requested, datais aligned to minimal boundaries. When speed is
requested, datais aligned on most ef cient boundaries as much as possible.

3. Fast optimizations (- OL): activate the peephole optimizer

4. Slower optimizations (- O2): also activate the common subexpression elimination (formerly
called the "reloading optimizer")

5. Uncertain optimizations (- Qu): With this switch, the common subexpression elimination al-
gorithm can be forced into making uncertain optimizations.

Although you can enable uncertain optimizations in most cases, for people who do not under-
stand the following technical explanation, it might be the safest to leave them off.

Remark: If uncertain optimizations are enabled, the CSE algortihm assumes that
o If something is written to alocal/global register or a procedure/function parameter, this
value doesn’t overwrite the value to which a pointer points.
o If something is written to memory pointed to by a pointer variable, this value doesn’'t
overwrite the value of alocal/global variable or a procedure/function parameter.

The practical upshot of thisisthat you cannot use the uncertain optimizationsif you both write
and read local or global variables directly and through pointers (thisincludes Var parameters,
as those are pointers too).

The following example will produce bad code when you switch on uncertain optimizations:

104

CHAPTER 11. OPTIMIZATIONS

Var tenp: Longint;

Procedure Foo(Var Bar: Longint);
Begi n
If (Bar = tenp)
Then
Begi n
I nc(Bar);
If (Bar <> tenmp) then Witeln(’ bug!’)
End
End;

Begi n
Foo(Tenp) ;
End.

The reason it produces bad code is because you access the global variable Tenp both through
its name Tenp and through a pointer, in this case using the Bar variable parameter, which is
nothing but a pointer to Tenp in the above code.

On the other hand, you can use the uncertain optimizationsif you access global/local variables
or parameters through pointers, and only access them through this pointer.

For example:
Type TM/Rec = Record
a, b: Longint;
End;
PMyRec = *"TMyRec;

TWRecArray = Array [1..100000] of TMyRec;
PMyRecArray = "TMyRecArray;

Var MyRecArrayPtr: PMyRecArray;
MyRecPtr: PMyRec;
Counter: Longint;

Begi n
New(MyRecArrayPtr);
For Counter := 1 to 100000 Do

Begi n
MyRecPtr : = RecArrayPtr”[Counter];
M/RecPtr”.a : = Counter;
MyRecPtr~. b := Counter div 2;

End;

End.

Will produce correct code, because the global variable MyRecAr rayPt r is not accessed
directly, but only through a pointer (MyRecPt r in this case).

In conclusion, one could say that you can use uncertain optimizations only when you know
what you're doing.

1 You can use multiple pointers to point to the same variable as well, that doesn’t matter.

105

CHAPTER 11. OPTIMIZATIONS

11.2.2 Motorola 680x0 specic

Using the- Q2 (the default) switch does several optimizationsin the code produced, the most notable
being:

e Sign extension from byte to long will use EXTB

e Returning of functions will use RTD

Range checking will generate no run-time calls

Multiplication will use the long MULS instruction, no runtime library call will be generated

Division will use the long DI VS instruction, no runtime library call will be generated

11.3 Optimization switches

Thisiswhere the various optimizing switches and their actions are described, grouped per switch.

-On: with n = 1..3: these switches activate the optimizer. A higher level automatically includes all
lower levels.

e Level 1 (- O1) activates the peephole optimizer (common instruction sequences are re-
placed by faster equivalents).

e Level 2 (- O2) enablesthe assembler data ow analyzer, which allows the common subex-
pression elimination procedure to remove unnecessary reloads of registers with values
they already contain.

e Level 3 (-) enables uncertain optimizations. For more info, see -Ou.

-OG: This causes the code generator (and optimizer, |F activated), to favor faster, but code-wise
larger, instruction sequences (such as"subl $4, %esp") instead of slower, smaller instruc-
tions ("ent er $4"). Thisisthe default setting.

-Og: This one is exactly the reverse of -OG, and as such these switches are mutually exclusive:
enabling one will disable the other.

-Or: This setting causes the code generator to check which variables are used most, so it can keep
thosein aregister.

-Opn: with n=1..3: Setting the target processor does NOT activate the optimizer. It merely in u-
ences the code generator and, if activated, the optimizer:

e During the code generation process, this setting is used to decide whether ajump table
or a sequence of successive jumps provides the best performance in a case statement.

¢ The peephole optimizer takes a number of decisions based on this setting, for example it
trandates certain complex instructions, such as

nmovzbl (nem, %ax|
to a combination of simpler instructions

xorl %eax, %eax
novb (men), %l

for the Pentium.

-Ou: This enables uncertain optimizations. You cannot use these aways, however. The previous
section explains when they can be used, and when they cannot be used.

106

CHAPTER 11. OPTIMIZATIONS

11.4 Tipsto get faster code

Here, some generd tips for getting better code are presented. They mainly concern coding style.

e Find abetter algorithm. No matter how much you and the compiler tweak the code, aquicksort
will (almost) always outperform a bubble sort, for example.

e Use variables of the native size of the processor you're writing for. Thisis currently 32-bit or
64-bit for Free Pascal, so you are best to use longword and longint variables.

e Turn on the optimizer.

e Write your if/then/else statements so that the code in the "then"-part gets executed most of the
time (improves the rate of successful jump prediction).

e Do not use ansistrings, widestrings and exception support, as these require alot of code over-
head.

e Prole your code (see the -pg switch) to nd out where the bottlenecks are. If you want,
you can rewrite those parts in assembler. You can take the code generated by the compiler
as a starting point. When given the - a command-line switch, the compiler will not erase the
assembler le at the end of the assembly process, so you can study the assembler le.

115 Tipsto get smaller code
Here are some tips given to get the smallest code possible.

e Find abetter algorithm.
e Usethe- Og compiler switch.

e Regroup globa static variables in the same module which have the same size together to min-
imize the number of alignment directives (which increases the . bss and . dat a sections
unecessarily). Internally thisis due to the fact that all static datais written to in the assembler

le, in the order they are declared in the pascal source code.

e Do not use the cdecl modi er, as this generates about 1 additional instruction after each
subroutine call.

e Usethe smartlinking options for al your units (including the sy st emunit).

e Do not use ansistrings, widestrings and exception support, as these require alot of code over-
head.

e Turn off range checking and stack-checking.

e Turn off runtime type information generation

107

Chapter 12

Programming shared libraries

12.1 Introduction

Free Pascal supports the creation of shared libraries on severa operating systems. The following
table (table (12.1)) indicates which operating systems support the creation of shared libraries.

Table 12.1: Shared library support

Operating systems Library extension Library pre x

linux .S0 lib
windows dil <none>
BeOS .S0 lib
FreeBSD .80 lib
NetBSD .S0 lib

The library prex column indicates how the names of the libraries are resolved and created. For
example, under LINUX, the library name will alwaus have the | i b prex when it is created. So if
you create alibrary called mylib, under LiNUX, thiswill result in the libmylib.so. Furthermore, when
importing routines from shared libraries, it is not necessary to give the library pre x or the lename
extension.

In the following sections we discuss how to create a library, and how to use these libraries in pro-
grams.

12.2 Creating alibrary

Creation of libraries is supported in any mode of the Free Pascal compiler, but it may be that the
arguments or return values differ if thelibrary is compiled in 2 different modes. E.g. if your function
expects an | nt eger argument, then the library will expect different integer sizes if you compile it
in Delphi mode or in TP mode.

A library can be created just as a program, only it uses the | i brary keyword, and it has an
export s section. The following listing demonstrates asimple library:

Listing: progex/subs.pp
{

Example library

108

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

}

library subs;

function SubStr(CString: PChar;FromPos,ToPos: Longint): PChar;
cdecl; export;

var
Length: Integer;

begin
Length := StrLen (CString);
SubStr := CString + Length;
if (FromPos > 0) and (ToPos >= FromPos) then
begin
if Length >= FromPos then
SubStr := CString + FromPos — 1;
if Length > ToPos then
CString[ToPos] := #0;
end;
end;

exports
SubStr;

end.

The function SubSt r does not have to be declared inthe library leitself. It can also be declared in
the interface section of a unit that is used by the library.

Compilation of this source will result in the creation of alibrary called libsubs.so on UNIX systems,
or subs.dll on WiNDoOws or 0s/2. The compiler will take care of any additional linking that is
required to create a shared library.

The library exports one function: SubSt r. The case is important. The case as it appears in the
export s clauseis used to export the function.

If you want your library to be called from programs compiled with other compilers, it is important
to specify the correct calling convention for the exported functions. Since the generated programs
by other compilers do not know about the Free Pascal calling conventions, your functions would be
called incorrectly, resulting in a corrupted stack.

On WINDOwS, most libraries use the st dcal | convention, so it may be better to use that one if
your library is to be used on WINDOWS systems. On most UNIX systems, the C calling convention
isused, therefore thecdecl modi er should be used in that case.

12.3 Usingalibrary in a pascal program

In order to use afunction that residesin alibrary, it is suf cient to declare the function asit existsin
thelibrary asanext er nal function, with correct arguments and return type. The calling convention
used by the function should be declared correctly as well. The compiler will then link the library as
speci ed inthe ext er nal statement to your program?.

For example, to use the library as de ned above from a pascal program, you can use the following
pascal program:

Listing: progex/psubs.pp

11f you omit the library name in the ext er nal modi er, then you can till tell the compiler to link to that library using
the{ $Li nkl i b} directive.

109

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

program testsubs;

function SubStr(const CString: PChar; FromPos, ToPos: longint): PChar;
cdecl; external ’'subs’;

var

s: PChar;

FromPos, ToPos: Integer;
begin

s := 'Test’;

FromPos := 2;

ToPos := 3;

WriteLn (SubStr (s, FromPos, ToPos));
end.

Asisshown in the example, you must declare the function asext er nal . Here also, it is necessary
to specify the correct calling convention (it should always match the convention as used by the
function in the library), and to use the correct casing for your declaration. Also notice, that the
library importing did not specify the lename extension, nor wasthe | i b pre x added.

This program can be compiled without any additional command-switches, and should run just like
that, provided the library is placed where the system can nd it. For example, on LINUX, thisis
/usr/lib or any directory listed in the /etc/ld.so.conf le. On W INDOWS, this can be the program
directory, the WINDOWS system directory, or any directoy mentioned in the PATH.

Using thelibrary in thisway links the library to your program at compile time. This means that

1. Thelibrary must be present on the system where the program is compiled.
2. Thelibrary must be present on the system where the program is executed.

3. Both libraries must be exactly the same.

Or it may simply be that you don’'t know the name of the function to be called, you just know the
arguments it expects.

It istherefore also possible to load the library at run-time, store the function address in a procedural
variable, and use this procedural variable to access the function in the library.

The following example demonstrates this technique:
Listing: progex/plsubs.pp

program testsubs;

Type
TSubStrFunc =
function (const CString:PChar;FromPos,ToPos: longint):PChar;cdecl;

Function dlopen(name: pchar;mode: longint): pointer;cdecl;external 'dl’;
Function disym(lib: pointer; name: pchar): pointer;cdecl;external 'dl’;
Function dlclose(lib: pointer):longint;cdecl;external ’'dl’;

var
s: PChar;
FromPos, ToPos: Integer;
lib : pointer;
SubStr : TSubStrFunc;

begin

110

Remark:

CHAPTER 12.

PROGRAMMING SHARED LIBRARIES

s =
FromPos :=
ToPos := 3;
lib:=dlopen(’libsubs.so’ ,1);

"Test’;
2;

Pointer (Substr):=dlsym(lib , "SubStr’);

WriteLn (SubStr(s, FromPos, ToPos));

diclose(lib);
end.

As in the case of compile-time linking, the crucia thing in this listing is the declaration of the
TSubSt r Func type. It should match the declaration of the function you're trying to use. Failure
to specify a correct de nition will result in afaulty stack or, worse still, may cause your program to

crash with an access violation.

12.4 Using a pascal library from a C program

The examplesin this section assume a LINUX system; similar commands as the ones below exist for

other operating systems, though.

You can also call aFree Pascal generated library from a C program:

Listing: progex/ctest.c

#include <string .h>

extern charx SubStr(const charx, int,

int main()
{
char xs;
int FromPos, ToPos;

s = strdup("Test");
FromPos = 2;
ToPos = 3;

int);

printf ("Result from SubStr: '%s '\n", SubStr(s, FromPos, ToPos));

return O;

}

To compile this example, the following command can be used:

gcc -0 ctest ctest.c -1subs

provided the codeisin ctest.c.

Thelibrary can also be loaded dynamically from C, as shown in the following example;

Listing: progex/ctest2.c

#include <dlfcn.h>
#include <string.h>

int main()
{
void xlib;
char xs;
int FromPos, ToPos;
char* (xSubStr)(const charx, int,

int);

111

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

lib = dlopen("./libsubs.so", RTLD_LAZY);
SubStr = disym(lib , "SUBSTR");

s = strdup("Test");

FromPos = 2;

ToPos = 3;

printf ("Result from SubStr: '%s '\n", (xSubStr)(s, FromPos, ToPos));
diclose (lib);

return O;

}

This can be compiled using the following command:
gcc -0 ctest2 ctest2.c -I1dl

The- | dl tellsgcc that the program needs the libdl.so library to load dynamical libraries.

125 SomeWindowsissues

By default, Free Pascal (actually, the linker used by Free Pascal) creates libraries that are not relo-
catable. This means that they must be loaded at a xed address in memory: this address is called
the ImageBase address. If two Free Pascal generated libraries are loaded by a program, there will be
aconict, because the rst librarie aready occupies the memory location where the second library
should be |oaded.

There are 2 switchesin Free Pascal which control the generation of shared libraries under WINDOWS:

-WR Generate arelocatable library. Thislibrary can be moved to another location in memory if the
ImageBase address it wantsis already in use.

-WB Specify the ImageBase addressfor the generated library. The standard |mageBase used by Free
Pascal is0x10000000. This switch allows to change that by specifying another address, for
instance - W\B11000000.

The rst option is preferred, as a program may load many libraries present on the system, and they

could already be using the ImageBase address. The second option is faster, as no relocation needs to
be doneif the ImageBase address is not yet in use.

112

Remark:

Chapter 13

Using Windows resour ces

13.1 Theresourcedirective $R

Under WINDOWS, you can include resourcesin your executable or library usingthe{ $R fi | enane}
directive. These resources can then be accessed through the standard WiNDoOws API calls.

When the compiler encounters a resource directive, it just creates an entry in the unit .ppu le; it
doesn’t link the resource. Only when it creates a library or executable, it looks for al the resource
les for which it encountered a directive, and triesto link them in.

The default extension for resource lesis .res. Whenthe lename has asthe rst character an asterix
(*), the compiler will replace the asterix with the name of the current unit, library or program.

This means that the asterix may only be used after auni t, | i brary or pr ogr amclause.

13.2 Creating resources

The Free Pascal compiler itself doesn’t create any resource les; it just compiles them into the exe-
cutable. To create resource les, you can use some GUI tools as the Borland resource workshop; but
it isalso possible to use a WiINDOWS resource compiler like GNU windres. windres comes with the
GNU bhinutils, but the Free Pascal distribution also contains a version which you can use.

The usage of windresis straightforward; it reads an input le describing the resources to create and
outputs aresource le.

A typica invocation of windres would be
wi ndres -i nystrings.rc -o nystrings.res

thiswill read the mystrings.rc le and output a mystrings.res resource le.

A complete overview of the windres tools is outside the scope of this document, but here are some
things you can useit for:

stringtables that contain lists of strings.

bitmaps which areread from an external le.

icons which are also read from an external le.

Version information which can be viewed with the WiNDows explorer.

Menus Can be designed as resources and used in your GUI applications.

113

CHAPTER 13. USING WINDOWS RESOURCES

Arbitrary data Can beincluded as resources and read with the windows APl calls.

Some of these will be described below.

13.3 Using string tables.

String tables can be used to store and retrieve large collections of stringsin your application.
A string table looks as follows:

STRINGTABLE { 1, "hello World !"
2, "hello world again !"
3, "last hello world !'" }
You can compile this (we assumethe leiscalled tests.rc) asfollows:
windres -i tests.rc -o tests.res
And thisisthe way to retrieve the strings from your program:
program tests;
{$rmode obj f pc}
Uses W ndows;
{$R *.res}
Function LoadResourceString (Index : longint): Shortstring;
begi n
Set Lengt h(Resul t, LoadSt ri ng(Fi ndResource(0, Ni |, RT_STRING, | ndex, @Resul t[1], Si zeO

end;

Var
I: longint;

begi n
For i:=1 to 3 do
Witeln (Loadresourcestring(l));
end.

Thecall toFi ndResour ce searchesfor the stringtablein the compiled-in resources. TheLoadSt ri ng
function then reads the string with index i out of the table, and puts it in a buffer, which can then be
used. Both calls are in the windows unit.

13.4 Inserting version information

The win32 API alows to store version information in your binaries. This information can be made
visible with the WiINDow's Explorer, by right-clicking on the executable or library, and selecting the
"Properties menu. Inthetab 'Version’ the version information will be displayed.

Hereis how to insert version information in your binary:

114

CHAPTER 13. USING WINDOWS RESOURCES

1 VERSI ONI NFO

FI LEVERSION 4, 0, 3, 17
PRODUCTVERSION 3, 0, 0, O
FI LEFLAGSMVASK 0

FI LECS 0x40000

FI LETYPE 1
{BLOCK "StringFilelnfo"
{BL@K "040904E4"
{VALUE " ConpanyNane", "Free Pascal"
VALUE "Fil eDescription”, "Free Pascal version information extractor”

VALUE "Fil eVersion", "1.0"

VALUE "I nt er nal Nane", "Shower"

VALUE " Legal Copyright", "GNU Public License"
VALUE "Ori gi nal Fi | enanme", "shower. pp"

VALUE " Product Nane", "Free Pascal"

VALUE " Product Versi on", "1.0"

}
}
}

As you can see, you can insert various kinds of information in the version info block. The key-
word VERSI ONI NFOmarks the beginning of the version information resource block. The keywords
FI LEVERSI ON, PRODUCTVERSI ONgivetheactua leversion, whiletheblock Stri ngFil el nfo
gives other information that is displayed in the explorer.

The Free Component Library comes with a unit (leinfo) that allows to extract and view version
information in a straightforward and easy manner; the demo program that comes with it (showver)
shows version information for an arbitrary executable or DLL.

13.5 Inserting an application icon

When WiINDOWS shows an executable in the Explorer, it looks for an icon in the executable to show
in front of the lename, the application icon.

Inserting an application icon is very easy and can be done as follows
Appl con I CON "fil enamne.ico"

Thiswill read the le lename.ico andinsert it in the resource le.

13.6 Using a pascal preprocessor

Sometimes you want to use symbolic names in your resource le, and use the same names in your
program to access the resources. To accomplish this, there exists a preprocessor for windres that
understands pascal syntax: fprcp. This preprocessor is shipped with the Free Pascal distribution.

The ideais that the preprocessor reads a pascal unit that has some symbolic constants de ned in it,
and replaces symbolic namesin the resource le by the values of the constants in the unit:

Asan example: consider the follwoing unit:

115

CHAPTER 13.

USING WINDOWS RESOURCES

unit nyunit;
interface
Const
First = 1;
Second = 2:
Third = 3;

| npl enent ati on
end.

And the following resource le:
#i ncl ude "nyunit. pp"
STRINGTABLE { First, "hello World !"

Second, "hello world again !'"
Third, "last hello world !'" }

if you invoke windres with the - pr epr ocessor option:

Wi ndres --preprocessor fprcp -i myunit.rc -o nyunit.res

Then the preprocessor will replace the symbolic names’ rst’, "second’ and 'third’ with their actual

values.

In your program, you can then refer to the strings by their symbolic names (the constants) instead of

using a numeric index.

116

Appendix A

Anatomy of aunit le

A.1 Basics

As described in chapter 4, page 53, unit description les (hereafter called PPU les for short), are

used to determine if the unit code must be recompiled or not. In other words, the PPU les act as
mini-make les, which is used to check dependencies of the different code modules, aswell as verify
if the modules are up to date or not. Furthermore, it contains all public symbols de ned for amodule.

The general format of the ppu leformat isshownin gure(A.1).

To read or write the ppu le, the ppu unit ppu.pas can be used, which has an object called tppu le
which holds all routines that deal with ppu le handling. While describing the layout of a ppu le, the
methods which can be used for it are presented as well.

A unit le consists of basically ve or six parts:

A unit header.

A genera information part (wrongly named interface section in the code)
A denition part. Contains all type and procedure de nitions.

A symbol part. Contains all symbol names and references to their de nitions.

a ~ 0w D P

A browser part. Contains all references from this unit to other units and inside this unit. Only
availablewhentheuf _has_browser agissetintheunit ags

6. A leimplementation part (currently unused).

A.2 reading ppu les

We will rst create an object ppu le which will be used below. We are opening unit test.ppu as an
example.

var
ppufile : pppufile;
begi n
{ Initialize object }
ppufil e:=new(pppufile,init(’test.ppu’);
{ open the unit and read the header, returns false when it fails }

117

APPENDIX A. ANATOMY OF A UNIT FILE

if not ppufile.openfile then
error(’error opening unit test.ppu’);

{ here we can read the unit }

{ close unit }
ppufile.closefile;

{ rel ease object }

di spose(ppufil e, done);
end;

Note: When afunction fails (for example not enough bytesleftin an entry) it setstheppuf i | e. error
variable.

A.3 TheHeader

The header consists of arecord (t ppuheader) containing several pieces of information for recom-
pilation. Thisis shown intable (A.1). The header is always stored in little-endian format.

Table A.1: PPU Header

offset | size (bytes) | description

00h 3 Magic: 'PPU’ in ASCII

03h 3 PPU File format version (e.g: '021’ in ASCII)

06h 2 Compiler version used to compile this module (major,minor)
08h 2 Code module target processor

0Ah 2 Code module target operating system

0Ch 4 Flagsfor PPU le

10h 4 Size of PPU le (without header)

14h 4 CRC-32 of theentire PPU le

18h 4 CRC-32 of partial data of PPU le (public data mostly)
1Ch 8 Reserved

The header is already read by the ppuf i | e. openfi | e command. You can accessal eldsusing
ppufil e. header which holdsthe current header record.

Table A.2: PPU CPU Field values

value description

unknown

Intel 80x86 or compatible
Motorola 680x0 or compatible
Alpha AXP or compatible
PowerPC or compatible

A WNPEFLO

Some of the possible agsin the header, are described in table (A.3). Not all the ags are described,
for more information, read the source code of ppu.pas.

118

APPENDIX A. ANATOMY OF A UNIT FILE

Table A.3: PPU Header Flag values

Symbolic bit agname Description

uf_init Module has an initialization (either Delphi or TP style) section.
uf_nalize Module has a nalization section.

uf_big_endian All the data stored in the chunks is in big-endian format.
uf_has browser Unit contains symbol browser information.

uf_smart_linked The code module has been smartlinked.

uf_static linked The code is statically linked.

uf_has_resources Unit has resource section.

A.4 Thesections

Apart from the header section, all the datain the PPU leis separated into data blocks, which permit
easily adding additional data blocks, without compromising backward compatibility. Thisis similar
to both Electronic Arts IFF chunk format and Microsoft’s RIFF chunk format.

Each 'chunk’ (t ppuent ry) hasthe following format, and can be nested:

Table A.4: chunk data format

offset | size (bytes) | description

00h 1 Block type (nested (2) or main (1))
01h 1 Block identi er
02h 4 Size of this data block

06h+ | <variable> | Datafor thisblock

Each main section chunk must end with an end chunk. Nested chunks are used for record, class or
object elds.

Toread anentry youcansimply call ppufi | e. readent ry: byt e, itreturnsthet ppuentry. nr
eld, which holds the type of the entry. A common way how this worksis (example is for the sym-
bols):

repeat
b: =ppufile.readentry;
case b of
i b<etc> : begin
end;
i bendsynms : break
end;

until false;

The possible entry types are found in ppu.pas, but a short description of the most common ones are
shown in table (A.5).

Then you can parse each entry type yourself. ppufi | e. r eadent r y will take care of skipping un-
read bytesin the entry and readsthe next entry correctly! A special functionisski puntil entry(until b: byte)
which will read the ppu le until it ndsentry unti | b inthe main entries.

Parsing an entry can be done with ppuf i | e. get xxx functions. The available functions are:

procedure ppufile.getdata(var b;len:longint);

119

: bool e

APPENDIX A. ANATOMY OF A UNIT FILE

Table A.5: Possible PPU Entry types

Symbolic name Location Description
ibmodulename General Name of this unit.
ibsource les General Name of source les.
ibusedmacros General Name and state of macros used.
ibloadunit Generd Modules used by this units.
inlinkunito les Genera Object les associated with this unit.
iblinkunitstaticlibs General Static libraries associated with this unit.
iblinkunitsharedlibs General Shared libraries associated with this unit.
ibendinterface General End of General information section.
ibstartdefs Interface Start of de nitions.
ibenddefs Interface End of de nitions.
ibstartsyms Interface Start of symbol data.
ibendsyms Interface End of symbol data.
ibendimplementation Implementation End of implementation data.
ibendbrowser Browser End of browser section.
ibend General End of Unit le.

function getbyte: byte;

function getword:word;
function getlongint:Ilongint;
function getreal:ppureal;
function getstring:string;

To check if you're at the end of an entry you can use the following function:

function EndO Entry: bool ean;

notes:

1. ppur eal isthe best real that exists for the cpu where the unit is created for. Currently it is
ext ended for i386 and si ngl e for m68k.

2. thei bobj ect def andi br ecor ddef have stored ade nition and symbol section for them-
selves. So you'll need arecursive call. See ppudump.pp for a correct implementation.

A complete list of entries and what their elds contain can be found in ppudump.pp.

A.5 Creating ppu les

Creating a new ppu le works almost the same as reading one. First you need to init the object and
cal create:

ppufil e: =new(pppufile,init(’ output.ppu));
ppufile.createfile;

After that you can ssimply write al needed entries. You'll have to take care that you write at least the
basic entries for the sections:

120

APPENDIX A. ANATOMY OF A UNIT FILE

i bendi nterface

i benddef s

i bendsyns

i bendbr owser (only when you’ ve set uf _has_browser!)
i bendi npl erent ati on

i bend

Writing an entry is alittle different than reading it. You need to rst put everything in the entry with
ppu le.putxxx:

procedure putdata(var b;len:longint);
procedure putbyte(b: byte);

procedure putword(w word);

procedure putlongint(l:longint);
procedure putreal (d: ppureal);
procedure putstring(s:string);

After putting all the things in the entry you need to call ppufil e. witeentry(ibnr:byte)
wherei bnr isthe entry number you're writing.

At the end of the le you need to call ppufile.witeheader to write the new header to the
le. Thistakes automatically care of the new size of the ppu le. When that is also done you can call
ppufil e.cl osefil e and dispose the object.

Extra functions/variables available for writing are:

ppufil e. NewHeader ;
ppufile. NewEntry;

Thiswill giveyou aclean header or entry. Normally thisiscalled automatically inppufil e. wi teentry,
so there should be no need to call these methods.

ppufile.flush;
to ush the current buffersto the disk
ppufil e.do_crc: bool ean;

set to false if you don’'t want that the crc is updated, this is necessary if you write for example the
browser data.

121

APPENDIX A. ANATOMY OF A UNIT FILE

Figure A.1: The PPU leformat

Header

General information

Fublic definitions

Interface
iInfarmation

Fublic symbols

—

mentation
rmation

Appendix B

Compiler and RTL sourcetree
structure

B.1 Thecompiler sourcetree

All compiler source les are in severa directories, normally the non-processor speci ¢ parts are
in source/compiler. Subdirectories are present for each of the supported processors and target
operating systems.

For more informations about the structure of the compiler have alook at the Compiler Manual which
contains also some informations about compiler internals.

The compiler directory also contains a subdirectory ut i | s, which contains mainly the utilities for
creation and maintainance of the message les.

B.2 TheRTL sourcetree

The RTL sourcetreeisdivided in many subdirectories, but is very structured and easy to understand.
It mainly consists of three parts:

1. A OS-dependent directory. This containsthe lesthat are different for each operating system.
When compiling the RTL, you should do it here. The following directories exist:
e atari for the ATARI.
e amiga for the AMIGA.
e beos for BEOS. It has one subdirectory for each of the supported processors.
e darwin for the unix-compatibility layer on Mac OS.
o freebsd for the FREEBSD platform.
e go32v1 For DOS, using the GO32v1 extender. Not maintained any more.
e g032v2 For DOS, using the GO32v2 extender.
e linux for LINUX platforms. It has one subdirectory for each of the supported processors.
e macos for the Mac OS platform.
e morphos for the MorphOS platform.

e netbsd for NETBSD platforms. It has one subdirectory for each of the supported pro-
Cessors.

123

APPENDIX B. COMPILER AND RTL SOURCE TREE STRUCTURE

netware for the Novell netware platform.

openbsd for the OpenBSD platform.

palmos for the PALMOS Dragonball processor based platform.
os2 for 0s/2.

sunos for the SOLARIS platform. It has one subdirectory for each of the supported
processors.

gnx for the QNX REALTIME PLATFORM.

win32 for Win32 platforms.

posix for posix interfaces (used for easier porting).

unix for unix common interfaces (used for easier porting).

2. A processor dependent directory. This contains les that are system independent, but proces-
sor dependent. It contains mostly optimized routines for a speci ¢ processor. The following
directories exist:

i386 for the Intel 80x86 series of processors.

m68k for the Motorola 680x0 series of processors.

powerpc for the PowerPC processor.

sparc for the SUN SPARC processor.

x86_64 for Intel compatible 64-bit processors such asthe AMD64.

3. An OS-independent and Processor independent directory: inc. This contains complete units,
and include les containing interface parts of units as well as generic versions of processor
Speci ¢ routines.

124

Appendix C

Compiler limits

There are certain compiler limits inherent to the compiler:

1. Procedure or Function de nitions can be nested to a level of 32. This can be changed by
changing the maxnest i ng constant.

2. Maximally 1024 units can be used in a program when using the compiler. You can change this
by rede ning the maxuni t s constant in the compiler source le.

3. The maximum nesting level of pre-processor macrosis 16. This can be changed by changing
the value of max_nacr o_nesti ng.

4. Arraysarelimited to 2 GBytesin size in the default processor mode.

For processor speci ¢ compiler limitations refer to the Processor Limitations section in this guide
(6.8).

125

Appendix D

Compiler modes

Herewe list the exact effect of the different compiler modes. They can be set with the SMbde switch,
or by command line switches.

D.1 FPC mode

This mode is selected by the $MODE FPC switch. On the command-line, this means that you use
none of the other compatibility mode switches. It isthe default mode of the compiler (- M pc). This
means essentially:

1. You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

Overloading of functionsis allowed.
Nested comments are allowed.
The Objpas unit is NOT |oaded.

You can use the cvar type.

N o a0 b~ W

PChars are converted to strings automatically.

D.2 TP mode

This mode is selected by the $MODE TP switch. It tries to emulate, as closely as possible, the
behavior of Turbo Pascal 7. On the command-line, this mode is selected by the - M p switch.

1. Enumeration sizes default to a storage size of 1 byteif there are less than 257 elements.
2. You cannot use the address operator to assign procedural variables.

3. A forward declaration must not be repeated exactly the same by the implementation of afunc-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

126

APPENDIX D. COMPILER MODES

4. Overloading of functionsis not allowed.
5. The Objpas unit is NOT |loaded.
6. Nested comments are not allowed.

7. You can not use the cvar type.

D.3 Delphi mode

Thismode is selected by the SMODE DELPHI switch. It tries to emulate, as closely as possible, the
behavior of Delphi 4. On the command-line, this mode is selected by the - Miel pi h switch.

1. You can not use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of afunc-
tion/procedure. In particular, you not omit the parameters when implementing the function or
procedure.

3. Overloading of functionsis not allowed.
4. Nested comments are not allowed.

5. The Objpas unit is loaded right after the system unit. One of the consequences of thisis that
thetypel nt eger isredenedas Longi nt.

6. Parameters in class methods can have the same names as class properties (although it is bad
programming practice).

D.4 GPC mode

This mode is selected by the $MODE GPC switch. On the command-line, this mode is selected by
the- Mgpc switch.

1. You must use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of afunc-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

Overloading of functionsis not allowed.
The Objpas unit is NOT |oaded.

Nested comments are not allowed.

S N

You can not use the cvar type.

D.5 OBJFPC mode

This mode is selected by the SMODE OBJFPC switch. On the command-line, this mode is selected
by the - Mobj f pc switch.

1. You must use the address operator to assign procedural variables.

127

APPENDIX D. COMPILER MODES

2.

A forward declaration must be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

Overloading of functionsis allowed.
Nested comments are allowed.

The Objpas unit is loaded right after the system unit. One of the consequences of thisis that
thetypel nt eger isredened as Longi nt .

You can use the cvar type.
PChars are converted to strings automatically.

Parametersin class methods cannot have the same names as class properties.

D.6 MAC mode

This mode is selected by the $MODE MAC switch. On the command-line, this mode is selected by
the - MVAC switch. It mainly switches on some extra features:

© oo N o o &M wWw N B

=
©

Support for the $SETC directive.

Support for the $I FC, $EL SEC and $ENDC directives.

Support for the UNDEFI NED construct in macros.

Support for TRUE and FAL SE as values in macro expressions.

Macros may be assigned hexadecimal numbers, like $2345.

Thel npl enent at i on keyword can be omitted if the implementation section is empty.
Thecdecl modi er keyword can be abbreviatedto C.

UNI V modifer for types in parameter listsis accepted, but is otherwise ignored.

(ellipsis) is alowed in procedure declarations, is functionally equal to the var ar gs
keyword.

Procedures declared in the interface section which do not have a counterpart in the imple-
mentation section are considered external (implicit externals). In other words, for external
procedures, the ext er nal keyword may be omitted.

(Note: Macros are called ’ Compiler Variables in Mac OS dialects.)
Currently, the following Mac OS pascal extensions are not yet supported in MAC mode:

A nested procedure cannot be an actual parameter to a procedure.

No anonymous procedure typesin formal parameters.

External procedures declared in the interface must have the directive Ext er nal .
Conti nue instead of Cycl e.

Br eak instead of Leave

128

APPENDIX D. COMPILER MODES

e Exit should not have the name of the procedure to exit as parameter. Instead, for afunction
the value to return can be supplied as parameter.

e No propagating uses.

e Compiler directives de ned in interface sections are not exported.

129

Appendix E

Using fpcmake

E.1 Introduction

Free Pascal comes with aspecia make letool, fpcmake, which can be used to construct a Make le
for use with GNU make. All sources from the Free Pascal team are compiled with this system.

fpcmake uses a le Make le.fpc and constructs a le Make le from it, based on the settings in
Make le.fpc .

The following sections explain what settings can be set in Make le.fpc , what variables are set by
f pcmake, what variables it expects to be set, and what targets it de nes. After that, some settings
in the resulting Make le are explained.

E.2 Functionality

fpcmake generates amake le, suitable for GNU make, which can be used to

Compile units and programs, t for testing or for nal distribution.
Compile example units and programs separately.
Install compiled units and programsin standard locations.

Make archives for distribution of the generated programs and units.

a b~ 0w d P

Clean up after compilation and tests.

fpcmake knows how the Free Pascal compiler operates, which command line optionsit uses, how it
searchesfor lesand so on; It uses this knowledge to construct sensible command-lines.

Speci cally, it constructs the following targetsin the nal makele:
all Makesall units and programs.

debug Makes al units and programs with debug info included.
smart Makesall units and programs in smartlinked version.
examples Makes all example units and programs.

shared Makesal unitsand programsin shared library version (currently disabled)

130

APPENDIX E. USING FPCMAKE

install Instalsall unitsand programs.

sourceinstall Installsthe sourcesto the Free Pascal source tree.

exampleinstall Installs any example programs and units.

distinstall Installsall units and programs, as well as example units and programs.

zipinstall Makes an archive of the programs and units which can be used to install them on another
location, i.e. it makes an archive that can be used to distribute the units and programs.

zipsourceinstall Makes an archive of the program and unit sources which can be used to distribute
the sources.

Zipexampleinstall Makes an archive of the example programs and units which can be used to install
them on ancther location, i.e. it makes an archive that can be used to distribute the example
units and programs.

zipdistinstall Makes an archive of both the normal aswell as the example programs and units. This
archive can be used to install them on another location, i.e. it makes an archive that can be
used to distribute.

clean Cleansall lesthat are produced by a compilation.

distclean Cleans all lesthat are produced by a compilation, as well as any archives, examples or
les |eft by examples.

cleanall Same as clean.

info Produces some information on the screen about used programs, le and directory locations,
where things will go when installing and so on.

Each of these targets can be highly con gured, or even totaly overridden by the con guration le
Make le.fpc

E.3 Usage

fpcmake reads a Make le.fpc and converts it to a Make le suitable for reading by GNU make
to compile your projects. It is similar in functionality to GNU con gure or Imake for making X
projects.

fpcmake accepts lenames of make le description les as its command-line arguments. For each of
these lesit will create a Make le in the same directory where the le is located, overwriting any
existing le with that name.

If no options are given, it just attempts to read the le Make le.fpc in the current directory and tries
to construct a Make le from it if the - moption is given. Any previously existing Make le will be
erased.

if the - p optionisgiven, instead of aMake le , aPackage. f pc isgenerated. A Package.fpc le
describes the package and it's dependencies on other packages.

Additionaly, the following command-line options are recognized:
-p A Package.fpc leisgenerated.
-w A Make le isgenerated.

-T targets Support only speci ed target systems. Tar get s is a comma-separated list of targets.
Only rulefor the speci ed targets will be written.

131

APPENDIX E. USING FPCMAKE

-v Be more verbose.
-q bequiet.
-h Writesasmall help message to the screen.

E.4 Format of thecon guration le

This section describes the rules that can be present in the lethat isfed to fpcmake.

The le Make le.fpc isaplain ASCIl le that contains a number of pre-de ned sections as in a
WINDOWS .ini- le, or a Samba con guration le.

They look more or less as follows:

[package]
nanme=nysql
version=1.0.5

[target]
uni t s=nmysql _com nysql _versi on nysdl
exanpl es=t est db

[require]
libc=y
[install]

f pcpackage=y

[defaul t]
fpedir=../..

The following sections are recognized (in alphabetical order):

E.4.1 clean

Speci esrulesfor cleaning the directory of unitsand programs. Thefollowing entries are recogni zed:

units names of al unitsthat should be removed when cleaning. Don’t specify extensions, the make-
le will append these by itself.

les namesof lesthat should be removed. Specify full lenames.

E.4.2 compiler

In this section values for various compiler options can be speci ed, such as the location of severa
directories and search paths.

The following general keywords are recognised:

options The value of this key will be passed on to the compiler as options.

version If aspeci ¢ or minimum compiler version is needed to compile the units or programs, then
this version should be speci ed here.

132

APPENDIX E. USING FPCMAKE

The following keys can be used to control the location of the various directories used by the compiler:

unitdir A colon-separated list of directories that must be added to the unit search path of the com-
piler.

librarydir A colon-separated list of directories that must be added to the library search path of the
compiler.

objectdir A colon-separated list of directories that must be added to the object le search path of
the compiler.

targetdir Speci esthe directory where the compiled programs should go.

sourcedir A space separated list of directories where sources can reside. This will be used for the
vpat h setting of GNU make.

unittargetdir Speci esthe directory where the compiled units should go.

includedir A colon-separated list of directories that must be added to the include le search path of
the compiler.

sour cedir

E.4.3 Default

Thedef aul t section contains some default settings. The following keywords are recognized:

cpu Speci es the default target processor for which the Make le should compile the units and pro-
grams. By default thisis determined from the default compiler processor.

dir Speci esany subdirectories that make should also descend in and make the speci ed target there
aswell.

fpedir Speci esthe directory where all the Free Pascal source treesreside. Below this directory the
Make le expectsto ndthe rtl, fcl and packages directory trees.

rule Speci esthe default rule to execute. fpcmake will make sure that thisruleis executed if make
is executed without arguments, i.e., without an explicit target.

target Speci esthe default operating system target for which the Make le should compile the units
and programs. By default thisis determined from the default compiler target.

E.4.4 Dist

The Di st section controls the generation of a distribution package. A distribution package is a set
of archive les(zip lesor tar leson unix systems) that can be used to distribute the package.

The following keys can be placed in this section:
destdir Speci esthe directory where the generated zip les should be placed.

zipname Name of the archive le to be created. If no zipname is speci ed, this defaults to the
package name.

zZiptarget Thisisthe target that should be executed before the archive leis made. This defaultsto
install.

133

APPENDIX E. USING FPCMAKE

E.4.5 Install

Contains instructions for installation of the compiler units and programs. The following keywords
are recognized:

basedir The directory that is used as the base directory for the installation of units. Default thisis
prefi x appended with / | i b/ f pc/ FPC_VERSI ON for LINUX or simply the prefi x on
other platforms.

datadir Directory where data leswill beinstalled, i.e. the lesspeci edwiththe Fi | es keyword.

fpcpackage A boolean key. If thiskey is speci ed and equals vy, the leswill beinstalled as a fpc
package under the Free Pascal units directory, i.e. under a separate directory. The directory
will be named with the name speci ed inthe package section.

les extradata lesto beinstalled in the directory speci ed withthe dat adi r key.

prex isthedirectory below which al installsare done. Thiscorrespondstothe- pr ef i x argument
to GNU con gure . It isused for the installation of programs and units. By default, thisis/usr
on LINUX, and /pp on al other platforms.

units extraunits that should be installed, and which are not part of the unit targets. The unitsin the
units target will be installed automatically.

Unitswill be installed in the subdirectory units/$(OS_TARGET) of thedi r base entry.

E.4.6 Package

If apackage (i.e. acollection of unitsthat work together) is being compiled, then this section is used
to keep package information. The following information can be stored:

name The name of the package. When installing it under the package directory, this name will be
used to create adirectory (unlessit is overridden by one of the installation options)
version The version of this package.

main |f the package is part of another package, this key can be speci ed to indicate which package
itis part of.

E.4.7 Prerules

Anything that is in this section will be inserted as-is in the make le before the make le target rules
that are generated by fpcmake. This means that any variables that are normally de ned by fpcmake
rules should not be used in this section.

E.4.8 Requires

This section is used to indicate dependency on external packages (i.e units) or tools. The following
keywords can be used:

fpcmake Minimal version of fpcmake that this make le.fpc needs.

packages Other packages that should be compiled before this package can be compiled. Note that
thiswill also add all packages these packages depend on to the dependencies of this package.
By default, the Free Pascal Run-Time Library is added to thislist.

134

APPENDIX E. USING FPCMAKE

libc aboolean value that indicates whether this package needs the C library.

nortl aboolean that prevents the addition of the Free Pascal Run-Time Library to the required pack-
ages.

unitdir These directories will be added to the units search path of the compiler.

packagedir List of package directories. The packages in these directories will be made as well
before making the current package.

tools A list of executables of extratoolsthat are required. The full path to these toolswill be de ned
in the make le as a variable with the same name as the tool name, only in uppercase. For
example, the following de nition:

t ool s=upx

will lead to the de nition of a variable with the name UPX which will contain the full path to
the upx executable.

E.49 Rules

In this section dependency rules for the units and any other needed targets can be inserted. It will be
included at the end of the generated make le. Targets or 'default rules’ that aredened by fpcmake
can be inserted here; if they are not present, then fpcmake will generate a rule that will call the
genericf pc_ version. For alist of standard targetsthat will be de ned by fpcmake, see section E.2,
page 130.

For example, it is possibleto dene atarget al | : . If it isnot de ned, then fpcmake will generate
onewhich simply callsf pc_al | :

all: fpc_all

Thef pc_al | rulewill makeall targetsasde nedinthe Tar get section.

E.4.10 Target

This is the most important section of the make le.fpc le. Here the les are de ned which should
be compiled when the'al’ target is executed.

The following keywords can be used there:
dirs A space separated list of directories where make should also be run.

exampledirs A space separated list of directories with example programs. The examples target will
descend in thislist of directories aswell.

examples A space separated list of example programs that need to be compiled when the user asks
to compile the examples. Do not specify an extension, the extension will be appended.

loaders A space separated list of names of assembler les that must be assembled. Don't specify
the extension, the extension will be appended.

programs A space separated list of program names that need to be compiled. Do not specify an
extension, the extension will be appended.

rsts alist of rst lesthat needs to be converted to .po lesfor use with GNU gettext and interna-
tionalization routines.

units A space separated list of unit names that need to be compiled. Do not specify an extension,
just the name of the unit asit would appear un auses clauseis suf cient.

135

APPENDIX E. USING FPCMAKE

E.5 Programsneeded to use the generated makele

At least the following programs are needed by the generated Make le to function correctly:

Cp acopy program.

date aprogram that prints the date.

install aprogramtoinstal les.

make the make program, obviously.

pwd aprogram that prints the current working directory.

rm aprogram to delete les.

zip the zip archiver program. (on dos/windows/OS2 systems only)

tar thetar archiver program (on Unix systems only).

These are standard programs on LINUX systems, with the possible exception of make. For bos or
WINDOWS NT, they can be found in the le makeutil.zip on the Free Pascal FTP site.

The following programs are optionally needed if you use some special targets. Which ones you need
are controlled by the settingsin thet ool s section.

cmp abosand WINDOWS NT le comparer.

diff a le comparer.

ppdep the ppdep depency lister. Distributed with Free Pascal.

ppu les the ppu lesunit le dependency lister. Distributed with Free Pascal.
ppumove the Free Pascal unit mover.

sed the sed program.

upx the UPX executable packer.
All of these can also be found on the Free Pascal FTP sitefor bosand WINDOWS NT. ppdep,ppu les
and ppumove are distributed with the Free Pascal compiler.

E.6 Variablesthat affect the generated makele

The make le generated by fpcmake contains alot of variables. Some of them are set in the make le
itself, others can be set and are taken into account when set.

These variables can be split in two groups:

e Directory variables.

e Compiler command-line variables.

Each group will be discussed separately.

136

APPENDIX E. USING FPCMAKE

E.6.1 Directory variables
The rst set of variables controls the directories that are recognised in the make le. They should not
be set in the Make le.fpc e, but can be speci ed on the commandline.

INCDIR thisisalist of directories, separated by spaces, that will be added as include directoriesto
the compiler command-line. Each directory in the list is prepended with - | and added to the
compiler options.

UNITDIR thisisalist of directories, separated by spaces, that will be added as unit search directo-
riesto the compiler command-line. Each directory inthelist is prepended with - Fu and added
to the compiler options.

LIBDIR isalist of library paths, separated by spaces. Each directory in the list is prepended with
- FI and added to the compiler options.

OBJDIR isalist of object ledirectories, separated by spaces, that is added to the object les path,
i.e. Each directory inthe list is prepended with - Fo.

E.6.2 Compiler command-line variables

Thefollowing variable can be set on the make command-line, they will be recognised and integrated
in the compiler command-line options.:

CREATESMART If thisvariable is de ned, it tells the compiler to create smartlinked units. Adds

- CX to the command-line options.

DEBUG If de ned, thiswill cause the compiler to include debug information in the generated units
and programs. It adds - gl to the compiler command-line, and will de nethe DEBUGde ne.

LINKSMART De ning this variable tells the compiler to use smartlinking. It adds - XX to the
compiler command-line options.

OPT Any optionsthat you want to pass to the compiler. The contents of OPT issimply added to the
compiler command-line.

OPTDEF Areoptiona de nes, added to the command-line of the compiler. They get - d prepended
to them.

OPTIMIZE if thisvariableis de ned, thiswill add - O&p3 to the command-line options.

RELEASE if thisvariableisde ned, thiswill add the - Xs - O&p3 - n optionsto the command-
line options, and will de nethe RELEASE de ne.

STRIP if thisvariable is de ned, thiswill add the - Xs option to the command-line options.
VERBOSE if thisvariableisde ned, then - vnwi will be added to the command-line options.

E.7 Variablesset by fpcmake

The make le generated by fpcmake contains alot of make le variables. fpcmake will write al of
the keys in the make le.fpc as makele variables in the form SECTI ON_KEYNANME. This means
that the following section:

[package]

nanme=nysql
version=1.0.5

137

APPENDIX E. USING FPCMAKE

will result in the following variable de nitions:

overri de PACKAGE NAME=nysql
overri de PACKAGE VERSI ON=1.0.5

Most targets and rules are constructed using these variables. They will be listed bel ow, together with
other variables that are de ned by fpcmake.

The following sets of variables are de ned:

e Directory variables.
e Program names.
o File extensions.

o Target les.

Each of these setsis discussed in the subsequent:

E.7.1 Directory variables
The following compiler directories are de ned by the make le:

BASEDIR isset to the current directory if the pwd command is available. If not, itissetto’. .

COMPILER_INCDIR isaspace-separated list of library paths. Each directory inthelistis prepended
with - FI and added to the compiler options. Set by thei ncdi r keyword in the Conpi | er
section.

COMPILER_LIBDIR isaspace-separated list of library paths. Each directory inthelistis prepended
with - FI and added to the compiler options. Set by thel i bdi r keyword in the Conpi | er
section.

COMPILER_OBJDIR isalist of object ledirectories, separated by spaces. Each directory in the
list is prepended with - Fo and added to the compiler options. Set by the obj di r keyword in
the Conpi | er section.

COMPILER_TARGETDIR Thisdirectory is added as the output directory of the compiler, where
al units and executables are written, i.e. it gets - FE prepended. It isset by thet argt di r
keyword in the Conpi | er section.

COMPILER_TARGETUNITDIR If set, thisdirectory isadded as the output directory of the com-
piler, where al units and executables are written, i.e. it gets - FU prepended.lt is set by the
targtdir keywordintheDi r s section.

COMPILER_UNITDIR isalist of unit directories, separated by spaces. Each directory in the list
is prepended with - Fu and is added to the compiler options. Set by theuni t di r keyword in
the Conpi | er section.

GCCLIBDIR (LINuUx only) is set to the directory where libgcc.a is. If needgccl i b is set to
True in the Li bs section, then this directory is added to the compiler commandline with
-Fl.

OTHERLIBDIR is a space-separated list of library paths. Each directory in the list is prepended
with - FI and added to the compiler options. If it is not de ned on linux, then the contents of
the/etc/ld.so.conf leis added.

138

APPENDIX E. USING FPCMAKE

The following directories are used for installs:

INSTALL BASEDIR isthebasefor all directorieswhere unitsareinstalled. By default, On LINUX,
thisisset to $(| NSTALL_PREFI X)/ | i b/ f pc/ $(RELEASEVER) .
On other systems, it isset to $(PREFI XI NSTALLDI R) . You canalsosetitwiththebasedi r
variableinthel nst al | section.

INSTALL_BINDIR issetto $(1 NSTALL_BASEDI R) /bi n on LINUX, and
$(1 NSTALL_BASEDI R) /bi n/$(OS_TARGET) on other systems. This is the place where
binaries are installed.

INSTALL_DATADIR The directory where data les are installed. Set by the Dat a key in the
I nstal | section.

INSTALL_LIBDIR issetto$(| NSTALL_PREFI X) /lib on LINUX,
and $(1 NSTALL_UNI TDI R) on other systems.

INSTALL PREFIX is set to /usr/local on LINUX, /pp on DOS or WINDOWS NT. Set by the
prefix keywordinthel nst al | section.

INSTALL_UNITDIR iswhere unitswill beinstalled. Thisis set to
$(| NSTALL_BASEDI R) /unit$(OS_TARCET) . If the units are compiled as a package,
$(PACKAGE_NAME) isadded to the directory.

E.7.2 Target variables

The second set of variables controls the targets that are constructed by the make le. They are created
by fpcmake, so you can use them in your rules, but you shouldn’t assign values to them yourself.

TARGET_DIRS Thisisthelist of directories that make will descend into when compiling. Set by
the Di r s key inthe Tar get section?

TARGET_EXAMPLES Thelist of examplesprogramsthat must be compiled. Set by theexanpl es
key inthe Tar get section.

TARGET_EXAMPLEDIRS the list of directories that make will descend into when compiling
examples. Set by theexanpl edi r s key inthe Tar get section.

TARGET_LOADERS isalist of space-separated names that identify |oaders to be compiled. This
is mainly used in the compiler's RTL sources. It is set by the | oader s keyword in the
Tar get s section.

TARGET_PROGRAMS This is a list of executable names that will be compiled. the makele
appends $(EXEEXT) to these names. It is set by the pr ogr ans keyword in the Tar get
section.

TARGET_UNITS Thisisalist of unit namesthat will be compiled. The make le appends $(PPUEXT)
to each of these names to form the unit le name. The sourcename is formed by adding
$(PASEXT) . Itisset by theuni t s keyword in the Tar get section.

ZIPNAME isthe name of the archive that will be created by the make le. Itisset by the zi pnane
keyword in the Zi p section.

ZIPTARGET isthe target that is built before the archive is made. this target is built rst. If suc-
cessful, the zip archive will be made. Itisset by thezi pt ar get keyword inthe Zi p section.

139

APPENDIX E. USING FPCMAKE

E.7.3 Compiler command-line variables

The following variables control the compiler command-line:

CPU_SOURCE the target CPU type is added as a de ne to the compiler command line. Thisis
determined by the Make leitself.

CPU_TARGET the target CPU type is added as a de ne to the compiler command line. Thisis
determined by the Make le itself.

OS SOURCE What platform the make le is used on. Detected automatically.

OS TARGET What platform will be compiled for. Added to the compiler command-linewitha- T
prepended.

E.7.4 Program names

The following variables are program names, used in make |e targets.

AS Theassembler. Default set to as.

COPY a lecopy program. Default set to cp -fp.

COPYTREE adirectory tree copy program. Default set to cp -frp.

CMP aprogram to compare les. Default setto cnp.

DEL a leremoval program. Default setto rm -f.

DELTREE adirectory removal program. Default set to rm -rf.

DATE aprogram to display the date.

DIFF aprogram to produce diff les.

ECHO an echo program.

FPC the Free Pascal compiler executable. Default set to ppc386. exe

INSTALL aprogramtoinstall les. Default setto install -m 644 on LINUX.
INSTALLEXE aprogram to install executable les. Default set to install -m 755 on LINUX.
LD Thelinker. Default set to Id.

LDCONFIG (LINux only) the program used to update the loader cache.

MKDIR aprogram to create directories if they don’t exist yet. Default set to install -m 755 -d
MOVE a lemove program. Default set to mv -f

PP the Free Pascal compiler executable. Default set to ppc386. exe

PPAS the name of the shell script created by the compiler if the - s option is speci ed. This com-
mand will be executed after compilation, if the - s option was detected among the options.

PPUMOVE the program to move unitsinto one big unit library.
PWD the pwd program.
SED astream-line editor program. Default set to sed.

UPX an executable packer to compress your executables into self-extracting compressed executa-
bles.

ZIPPROG azip program to compress les. zip targets are made with this program

140

APPENDIX E. USING FPCMAKE

E.7.5 File extensions

The following variables denote extensions of les. These variables include the . (dot) of the exten-
sion. They are appended to object names.

ASMEXT isthe extension of assembler les produced by the compiler.
LOADEREXT isthe extension of the assembler lesthat make up the executable startup code.
OEXT isthe extension of the object lesthat the compiler creates.

PACKAGESUFFIX is asuf x that is appended to package names in zip targets. This serves so
packages can be made for different OSes.

PPLEXT isthe extension of shared library unit les.

PPUEXT isthe extension of default units.

RSTEXT isthe extension of the .rst resource string les.
SHAREDLIBEXT isthe extension of shared libraries.
SMARTEXT isthe extension of smartlinked unit assembler les.

STATICLIBEXT isthe extension of static libraries.

E.7.6 Target les
The following variables are de ned to make targets and rules easier:

COMPILER is the complete compiler commandline, with all options added, after all Make le
variables have been examined.

DATESTR contains the date.

UNITPPUFILES alist of unit lesthat will be made. Thisisjust the list of unit objects, with the
correct unit extension appended.

E.8 Rulesand targetscreated by fpcmake

Themakef i | e. f pc de nesaseriesof targets, which can be called by your own targets. They have
names that resemble default names (such as’al’, 'clean’), only they havef pc_ prepended.

E.8.1 Pattern rules

The make |e makes the following pattern rules:

units how to make a pascal unit form a pascal source le.
executables how to make an executable from a pascal source le.

object le how to make an object lefrom an assembler le.

141

APPENDIX E. USING FPCMAKE

E.8.2 Build rules
The following build targets are de ned:

fpc_all target that buildsall units and executables aswell asloaders. If DEFAULTUNI TSisde ned,
executables are excluded from the targets.

fpc_debug thesameasf pc_al | , only with debug information included.
fpc_exes target to make al executablesin EXEOBJECTS.

fpc_loaders target to make all lesin LOADEROBJECTS.

fpc_packages target to make all packages that are needed to make the les.
fpc_shared target that makes all units as dynamic libraries.

fpc_smart target that makes al units as smartlinked units.

fpc_units target to make all unitsin UNI TOBJECTS.

E.8.3 Cleaning rules
The following cleaning targets are de ned:
fpc_clean cleansall lesthat result when f pc_al | was made.

fpc_distclean is the same as both previous target commands, but also deletes al object, unit and
assembler lesthat are present.

E.8.4 archiving rules

The following archiving targets are de ned:

fpc_zipdistinstall Target to make a distribution install of the package.
fpc_zipinstall Target to make aninstall zip of the compiled units of the package.
fpc_zipexampleinstall Target to make a zip of the example les.

fpc_zipsourceinstall Target to make azip of the source les.

The zip is made uzing the ZI PEXE program. Under LINUX, a.tar.gz leiscreated.

E.8.5 Installation rules
fpc_distinstall target which callsthei nst al | and exanpl ei nst al | targets.

fpc_install target toinstal the units.
fpc_sourceinstall target to install the sources (in case adistribution is made)

fpc_exampleinstall target to install the examples. (in case a distribution is made)

142

APPENDIX E. USING FPCMAKE

E.8.6 Informative rules

There is only one target which produces information about the used variables, rules and targets:
fpc_i nfo.

The following information about the make |e is presented:

e general con guration information: the location of the make le, the compiler version, target
OsS, CPU.

e thedirectories, used by the compiler.

al directories where leswill beinstalled.

all objectsthat will be made.
e al denedtools.

143

Appendix F

Compiling the compiler

F.1 Introduction

The Free Pascal team releases at intervals a completely prepared package, with compiler and units
all ready to use, the so-called releases. After a release, work on the compiler continues, bugs are
xed and features are added. The Free Pascal team doesn't make a new release whenever they

change something in the compiler, instead the sources are available for anyone to use and compile.
Compiled versions of RTL and compiler are also made daily, and put on the web.

There are, nevertheless, circumstances when the compiler must be recompiled manualy. When
changes are made to compiler code, or when the compiler is downloaded through CVS.

There are essentialy 2 ways of recompiling the compiler: by hand, or using the make les. Each of
these methods will be discussed.

F.2 Beforestarting

To compile the compiler easily, it is best to keep the following directory structure (a base directory
of /pp/src is supposed, but that may be different):

/ pp/ src/ Makefile
/ makefile.fpc
[rtl/1inux
/inc
/i 386
/...
/conpi | er

When the make les should be used, the above directory tree must be used.

The compiler and rtl source are zipped in such a way that when both are unzipped in the same
directory (/pp/src in the above) the above directory tree results.

There are 2 ways to start compiling the compiler and RTL. Both ways must be used, depending on
the situation. Usually, the RTL must be compiled rst, before compiling the compiler, after which
the compiler is compiled using the current compiler. In some specia cases the compiler must be
compiled rst, with a previously compiled RTL.

How to decide which should be compiled rst? In general, the answer is that the RTL should be
compiled rst. There are 2 exceptionsto thisrule:

144

APPENDIX F. COMPILING THE COMPILER

1. The rst case is when some of the internal routines in the RTL have changed, or if new in-
ternal routines appeared. Since the OLD compiler doesn’t know about these changed internal
routines, it will emit function calls that are based on the old compiled RTL, and hence are not
correct. Either the result will not link, or the binary will give errors.

2. Thesecond case is when something is added to the RTL that the compiler needs to know about
(anew default assembler mechanism, for example).

How to know if one of these things has occurred? There is no way to know, except by mailing the
Free Pascal team. When the compiler cannot be recompiled when rst compiling the RTL, then try
the other way.

F.3 Compiling using make

When compiling with make it is necessary to have the above directory structure. Compiling the
compiler is achieved with the target cycl e.

Under normal circumstances, recompiling the compiler is limited to the following instructions (as-
suming you start in directory /pp/src):

cd conpiler
make cycl e

This will work only if the make le isinstalled correctly and if the needed tools are present in the
PATH. Which tools must be installed can be found in appendix E.

The above instructions will do the following:

1. Using the current compiler, the RTL is compiled in the correct directory, which is determined
by the OS. e.g. under LINUX, the RTL is compiled in directory rtl/linux.

2. The compiler is compiled using the newly compiled RTL. If successful, the newly compiled
compiler executable is copied to atemporary executable.

3. Using the temporary executable from the previous step, the RTL is re-compiled.

4. Using the temporary executable and the newly compiled RTL from the last step, the compiler
is compiled again.

The last two steps are repeated 3 times, until three passes have been made or until the generated
compiler binary is equal to the binary it was compiled with. This process ensures that the compiler
binary is correct.

Compiling for another target: When compiling the compiler for another target, it is necessary to
specify the OS_ TARGET make le variable. It can be set to the following values. wi n32, go32v2,
0s2 and | i nux. Asan example, cross-compilation for the go32v2 target from the win32 target is
chosen:

cd conpiler
make cycle OS_TARGET=go32v2

Thiswill compile the go32v2 RTL, and compile ago32v2 compiler.

When compiling a new compiler and the compiler should be compiled using an existing com-
piled RTL, the al | target must be used, and another RTL directory than the default (which is the
.Irtl/$(OS_TARGET) directory) must be indicated. For instance, assuming that the compiled RTL
unitsarein/ pp/ rtl ,typing

145

APPENDIX F. COMPILING THE COMPILER

cd conpiler
make cl ean
make all UNI TDI R=/pp/rt

should usethe RTL fromthe/ pp/ rt | dirrectory.

This will then compile the compiler using the RTL units in /pp/rtl. After this has been done, the
"make cycle' can be used, starting with this compiler:

make cycl e PP=./ppc386

Thiswill do the make cycl e from above, but will start with the compiler that was generated by
themmake al | instruction.

In al cases, many options can be passed to nake to in uence the compile process. In general, the
make les add any needed compiler options to the command-line, so that the RTL and compiler can
be compiled. Additional options (e.g. optimization options) can be speci ed by passing them in
OPT.

F.4 Compiling by hand

Compiling by hand is dif cult and tedious, but can be done. The compilation of RTL and compiler
will be treated separately.

F.4.1 Compiling the RTL

To recompile the RTL, so a new compiler can be built, at least the following units must be built, in
the order speci ed:

loaders the program stubs, that are the startup code for each pascal program. These les have the .as
extension, because they are written in assembler. They must be assembled with the GNU as
assembler. These stubs are in the OS-dependent directory, except for LINUX, where they are
in aprocessor dependent subdirectory of the LINUX directory (i386 or m68k).

system the system unit. Thisunit is named differently on different systems:

Only on GO32v2, it's called system.
For LINUX it's called syslinux.

For WINDOwsS NT it's called syswin32.
For os/2 it's called sysos2

This unit resides in the OS-dependent subdirectories of the RTL.
strings The strings unit. This unit residesin the inc subdirectory of the RTL.

dos Thedos unit. It residesin the OS-dependent subdirectory of the RTL. Possibly other unitswill
be compiled as a consequence of trying to compile this unit (e.g. on LINUX, the linux unit will
be compiled, on go32, the go32 unit will be compiled).

objects the objects unit. It residesin the inc subdirectory of the RTL.

To compile these units on ai386, the following statements will do:

146

APPENDIX F. COMPILING THE COMPILER

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 -Us -Sg syslinux.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/strings.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di 386 dos. pp

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/objects.pp

These are the minimum command-line options, needed to compile the RTL.

For another processor, the i 386 should be changed into the appropriate processor. For another
operating system (target) the syslinux should be changed in the appropriate system unit le, and the
target OS setting (- T) must be set accordingly.

Depending on the target OS there are other units that can be compiled, but which are not strictly
needed to recompile the compiler. The following units are available for all plaforms:

objpas Needed for Delphi mode. Needs - S2 as an option. Resides in the objpas subdirectory.

sysutils many utility functions, like in Delphi. Resides in the objpas directory, and needs - S2 to
compile.

typinfo functionsto access RTTI information, like Delphi. Resides in the objpas directory.
math math functions like in Delphi. Residesin the objpas directory.

mmx extensions for MM X class Intel processors. Residesin in thei386 directory.

getopts a GNU compatible getopts unit. resides in the inc directory.

heaptrc to debug the heap. residesin the inc directory.

F.4.2 Compiling the compiler

Compiling the compiler can be done with one statement. It's always best to remove all units from
the compiler directory rst, so something like

rm*.ppu *.o
on LINUX, and on DOS

del *.ppu
del *.o

After this, the compiler can be compiled with the following command-line:
ppc386 -Tlinux -Fu../rtl/linux -di 386 -dGB pp. pas
So, the minimum options are;

1. The target OS. Can be skipped when compiling for the same target as the compiler which is
being used.

2. A path to an RTL. Can be skipped if a correct fpc.cfg con guration is on the system. If the
compiler should be compiled with the RTL that was compiled rst, this should be ../rtl/OS
(replace the OS with the appropriate operating system subdirectory of the RTL).

3. A de ne with the processor for which the compiler is compiled for. Required.

4. - dCDB. Required.

147

APPENDIX F. COMPILING THE COMPILER

5. - Sg is heeded, some parts of the compiler use got o statements (to be speci c¢: the scanner).

So the absolute minima command lineis

ppc386 -di 386 -dGDB -Sg pp. pas

Some other command-line options can be used, but the above are the minimum. A list of recognised
options can be found in table (F.1).

Table F.1: Possible de nes when compiling FPC

Dene does what

TP Needed to compile the compiler with Turbo or Borland Pascal.

GDB Support of the GNU Debugger (required switch).

1386 Generate a compiler for the Intel 1386+ processor family.

M68K Generate a compiler for the M680x0 processor family.

EXTDEBUG Some extra debug code is executed.

MEMDEBUG Some memory usage information is displayed.

SUPPORT_MMX only i386: enables the compiler switch MVMX which
allows the compiler to generate MM X instructions.

EXTERN_MSG Don't compile the msg les in the compiler, always use
external message les (default for TP).

LOGSECONDPASS Write compiler node information in assembler output.

NOOPT Do not include the optimizer in the compiler.

Thislist may be subject to change, the source le pp.pas always contains an up-to-date list.

148

Appendix G

Compiler de nes during compilation

This appendix describes the possible de nes when compiling programs using Free Pascal. A brief
explanation of the de ne, and when it isused is aso given.

Table G.1: Possible de nes when compiling using FPC

Dene

description

FPC_LINK_DYNAMIC De ned when the output will be linked dynamically.

FPC_LINK_STATIC
FPC_LINK_SMART
FPC_PROFILE

FPK

FPC

VER1

VERL 0
ENDIAN_LITTLE
ENDIAN_BIG
FPC_DELPHI
FPC_OBJFPC
FPC_TP

FPC_GPC

1.0.5.

Thisis de ned when using the -XD compiler switch.

De ned when the output will be linked statically.

Thisisthe default mode.

De ned when the output will be smartlinked.

Thisis de ned when using the -X X compiler switch.

De ned when pro ling code is added to program.

Thisis de ned when using the -pg compiler switch.

Always de ned for Free Pascal.

Always de ned for Free Pascal.

Always de ned for Free Pascal version 1.x.x.

Always de ned for Free Pascal version 1.0.x.

De ned when the Free Pascal target is alittle-endian processor
(80x86, Alpha, ARM).

De ned when the Free Pascal target is a big-endian processor
(680x0, PowerPC, SPARC, MIPS).

Free Pascal isin Delphi mode, either using compiler switch -Sd or
using the SMODE DELPHI directive.

Free Pascal isin Delphi mode, either using compiler switch -S2 or
using the SMODE OBJFPC directive.

Free Pascal isin Turbo Pascal mode, either using compiler switch -So or
using the SMODE TP directive.

Free Pascal isin GNU Pascal mode, either using compiler switch -Sp or
using the $SMODE GPC directive.

Remark: The ENDI AN _LI TTLE and ENDI AN_BI G de nes were added starting from Free Pascal version

Remark: The uNix de ne was added starting from Free Pascal version 1.0.5. The BSD operating systems no

longer de ne LINUX starting with version 1.0.7.

149

APPENDIX G. COMPILER DEFINES DURING COMPILATION

Table G.2: Possible CPU de nes when compiling using FPC

Dene When de ned?

CPU86 Free Pascal target is an Intel 80x86 or compatible.
CpPU87 Free Pascal target is an Intel 80x86 or compatible.
CPUI386 Free Pascal target is an Intel 80386 or later.

CPUGS8k Free Pascal target is a Motorola 680x0 or compatible.
CPUM68020 Free Pascal target is a Motorola 68020 or |ater.
CPUGS Free Pascal target is a Motorola 680x0 or compatible.
CPUSPARC Free Pascal target isa SPARC v7 or compatible.

CPUALPHA Free Pascal target is an Alpha AXP or compatible.
CPUPOWERPC Free Pascal target is a 32-hit PowerPC or compatible.

Table G.3: Possible de nes when compiling using target OS

Target operating system Denes

linux

freebsd

netbsd

sunos

go32v2

0s2

Windows 32-bit
Classic Amiga
Atari TOS
Classic Macintosh
PamOS

BeOS

ONX RTP

«««< prog.tex

LINUX, UNIX
FREEBSD, BSD, UNIX
NETBSD, BSD, UNIX
SUNOS, SOLARIS, UNIX
GO32V2, DPMI

0s2

WIN32

AMIGA

ATARI

MAC

PALMOS

BEOS, UNIX

QNX, UNIX

150

Appendix H

Stack con guration

This gives some important information on stack settings under the different operating systems. It
might be important when porting applications to other operating systems.

H.1 DOS

Under the DOS targets, the default stack is set to 256 kB. This can be modi ed with the GO32Vv2
target using a special DJGPP utility stubedit. It isto note that the stack size may be enlarged with
the compiler switch (- Cs). If the size speci ed with - Cs is greater than the default stack size, it
will be used instead, otherwise the default stack size is used.

H.2 Linux

Under LINUX, stack sizeisonly limited by the available memory of the system.

H.3 Netbsd

Under NETBSD, stack sizeis only limited by the available memory of the system.

H.4 Freebsd

Under FREEBSD, stack sizeisonly limited by the available memory of the system.

H.5 BeOS

Under BEOS, stack sizeis xed at 256Kb. It currently cannot be changed, it is recommended to turn
on stack checking when compiling for thistarget platform.

H.6 Windows

Under WINDOWS, stack size isonly limited by the available memory of the system.

151

APPENDIX H. STACK CONFIGURATION

H.7 OS2

Under 0s/2, stack sizeis speci ed at a default value of 8 Mbytes. This currently cannot be changed
directly.

H.8 Amiga

Under AmigaOs, stack size is determined by the user, which sets this value using the stack pro-
gram. Typica sizes range from 4 kB to 40 kB. The stack size currently cannot be changed, it is
recommended to turn on stack checking when compiling for thistarget platform.

H.9 Atari

Under Atari TOS, stack sizeis currently limited to 8 kB. The stack size currently cannot be changed,
it is recommended to turn on stack checking when compiling for this target platform.

152

Appendix |

Oper ating system speci ¢ behavior

This appendix describes some specia behaviors which vary from operating system to operating sys-
tem. Thisisdescribed intable (1.1). The GCC saved registersindicates what registers are saved when
certain declaration modi ers are used.

Table1.1: Operating system speci ¢ behavior

Operating systems Min. param. stack align GCC saved registers

Amiga 2 D2.D7,A2.A5
Atari 2 D2.D7,A2.A5
BeOS-x86 4 ESl, EDI, EBX
DOS 2 ESl, EDI, EBX
FreeBSD 4 ESl, EDI, EBX
linux-m68k D2.D7,A2.A5
linux-x86 4 ESI, EDI, EBX
MacOS-68k D2.D7,A2..A5
NetBSD-x86 ESl, EDI, EBX
NetBSD-m68k D2.D7,A2..A5
0S/2 4 ESl, EDI, EBX
PalmOS 2 D2.D7,A2.A5
QNX-x86 ESl, EDI, EBX
Solaris-x86 4 ESl, EDI, EBX
Win32 4 ESl, EDI, EBX

153

	About this document
	Compiler directives
	Local directives
	$A or $ALIGN : Align Data
	$ASMMODE : Assembler mode (Intel 80x86 only)
	$B or $BOOLEVAL : Complete boolean evaluation
	$C or $ASSERTIONS : Assertion support
	$CHECKPOINTER : Check pointer values
	$DEFINE : Define a symbol
	$ELSE : Switch conditional compilation
	$ELSEC : Switch conditional compilation
	$ENDC : End conditional compilation
	$ENDIF : End conditional compilation
	$ERROR : Generate error message
	$F : Far or near functions
	$FATAL : Generate fatal error message
	$FPUTYPE : Select coprocessor type
	$GOTO : Support Goto and Label
	$H or $LONGSTRINGS : Use AnsiStrings
	$HINT : Generate hint message
	$HINTS : Emit hints
	$IF : Start conditional compilation
	$IFC : Start conditional compilation
	$IFDEF Name : Start conditional compilation
	$IFNDEF : Start conditional compilation
	$IFOPT : Start conditional compilation
	$IMPLICITEXCEPTIONS : Do not generate finalization code
	$INFO : Generate info message
	$INLINE : Allow inline code.
	$INTERFACES : Specify Interface type.
	$I or $IOCHECKS : Input/Output checking
	$I or $INCLUDE : Include file
	$I or $INCLUDE : Include compiler info
	$I386_XXX : Specify assembler format (Intel 80x86 only)
	$L or $LINK : Link object file
	$LINKLIB : Link to a library
	$M or $TYPEINFO : Generate type info
	$MACRO : Allow use of macros.
	$MAXFPUREGISTERS : Maximum number of FPU registers for variables
	$MESSAGE : Generate info message
	$MMX : Intel MMX support (Intel 80x86 only)
	$NOTE : Generate note message
	$NOTES : Emit notes
	$OUTPUT_FORMAT : Specify the output format
	$P or $OPENSTRINGS : Use open strings
	$PACKENUM : Minimum enumeration type size
	$PACKRECORDS : Alignment of record elements
	$Q $OVERFLOWCHECKS: Overflow checking
	$R or $RANGECHECKS : Range checking
	$SATURATION : Saturation operations (Intel 80x86 only)
	$SETC : Define and assign a value to a symbol
	$STATIC : Allow use of Static keyword.
	$STOP : Generate fatal error message
	$T or $TYPEDADDRESS : Typed address operator (@)
	$UNDEF : Undefine a symbol
	$V or $VARSTRINGCHECKS : Var-string checking
	$WAIT : Wait for enter key press
	$WARNING : Generate warning message
	$WARNINGS : Emit warnings
	$X or $EXTENDEDSYNTAX : Extended syntax

	Global directives
	$APPID : Specify application ID.
	$APPID : Specify application name.
	$APPTYPE : Specify type of application.
	$CALLING : Default calling convention
	$COPYRIGHT specify copyright info
	$D or $DEBUGINFO : Debugging symbols
	$DESCRIPTION : Application description
	$E : Emulation of coprocessor
	Intel 80x86 version
	Motorola 680x0 version

	$G : Generate 80286 code
	$INCLUDEPATH : Specify include path.
	$L or $LOCALSYMBOLS : Local symbol information
	$LIBRARYPATH : Specify library path.
	$M or $MEMORY : Memory sizes
	$MODE : Set compiler compatibility mode
	$N : Numeric processing
	$O : Overlay code generation
	$OBJECTPATH : Specify object path.
	$PROFILE : Profiling
	$S : Stack checking
	$SMARTLINK : Use smartlinking
	$THREADNAME : Set thread name in Netware
	$THREADING : Allow use of threads.
	$UNITPATH : Specify unit path.
	$VERSION : Specify DLL version.
	$W or $STACKFRAMES : Generate stackframes
	$Y or $REFERENCEINFO : Insert Browser information

	Using conditionals, messages and macros
	Conditionals
	Predefined symbols

	Macros
	Compile time variables
	Compile time expressions
	Definition
	Usage

	Messages

	Using Assembly language
	Intel 80x86 Inline assembler
	Intel syntax
	AT&T Syntax

	Motorola 680x0 Inline assembler
	Signaling changed registers

	Generated code
	Units
	Programs

	Intel MMX support
	What is it about?
	Saturation support
	Restrictions of MMX support
	Supported MMX operations
	Optimizing MMX support

	Code issues
	Register Conventions
	accumulator register
	accumulator 64-bit register
	float result register
	self register
	frame pointer register
	stack pointer register
	scratch registers
	Processor mapping of registers
	Intel 80x86 version
	Motorola 680x0 version

	Name mangling
	Mangled names for data blocks
	Mangled names for code blocks
	Modifying the mangled names

	Calling mechanism
	Nested procedure and functions
	Constructor and Destructor calls
	objects
	classes

	Entry and exit code
	Intel 80x86 standard routine prologue / epilogue
	Motorola 680x0 standard routine prologue / epilogue

	Parameter passing
	Parameter alignment

	Processor limitations

	Linking issues
	Using external code and variables
	Declaring external functions or procedures
	Declaring external variables
	Declaring the calling convention modifier
	Declaring the external object code
	Linking to an object file
	Linking to a library

	Making libraries
	Exporting functions
	Exporting variables
	Compiling libraries
	Unit searching strategy

	Using smart linking

	Memory issues
	The memory model.
	Data formats
	integer types
	char types
	boolean types
	enumeration types
	floating point types
	single
	double
	extended
	comp
	real

	pointer types
	string types
	ansistring types
	shortstring types
	widestring types

	set types
	array types
	record types
	object types
	class types
	file types
	procedural types

	Data alignment
	Typed constants and variable alignment
	Structured types alignment

	The heap
	Heap allocation strategy
	The heap grows
	Debugging the heap
	Writing your own memory manager

	Using dos memory under the Go32 extender

	Resource strings
	Introduction
	The resource string file
	Updating the string tables
	GNU gettext
	Caveat

	Thread programming
	Introduction
	Programming threads
	Critical sections
	The Thread Manager

	Optimizations
	Non processor specific
	Constant folding
	Constant merging
	Short cut evaluation
	Constant set inlining
	Small sets
	Range checking
	And instead of modulo
	Shifts instead of multiply or divide
	Automatic alignment
	Smart linking
	Inline routines
	Stack frame omission
	Register variables

	Processor specific
	Intel 80x86 specific
	Motorola 680x0 specific

	Optimization switches
	Tips to get faster code
	Tips to get smaller code

	Programming shared libraries
	Introduction
	Creating a library
	Using a library in a pascal program
	Using a pascal library from a C program
	Some Windows issues

	Using Windows resources
	The resource directive $R
	Creating resources
	Using string tables.
	Inserting version information
	Inserting an application icon
	Using a pascal preprocessor

	Anatomy of a unit file
	Basics
	reading ppufiles
	The Header
	The sections
	Creating ppufiles

	Compiler and RTL source tree structure
	The compiler source tree
	The RTL source tree

	Compiler limits
	Compiler modes
	FPC mode
	TP mode
	Delphi mode
	GPC mode
	OBJFPC mode
	MAC mode

	Using fpcmake
	Introduction
	Functionality
	Usage
	Format of the configuration file
	clean
	compiler
	Default
	Dist
	Install
	Package
	Prerules
	Requires
	Rules
	Target

	Programs needed to use the generated makefile
	Variables that affect the generated makefile
	Directory variables
	Compiler command-line variables

	Variables set by fpcmake
	Directory variables
	Target variables
	Compiler command-line variables
	Program names
	File extensions
	Target files

	Rules and targets created by fpcmake
	Pattern rules
	Build rules
	Cleaning rules
	archiving rules
	Installation rules
	Informative rules

	Compiling the compiler
	Introduction
	Before starting
	Compiling using make
	Compiling by hand
	Compiling the RTL
	Compiling the compiler

	Compiler defines during compilation
	Stack configuration
	DOS
	Linux
	Netbsd
	Freebsd
	BeOS
	Windows
	OS/2
	Amiga
	Atari

	Operating system specific behavior

